Glycolytic Enzymes Localize to Synapses under Energy Stress to Support Synaptic Function

被引:186
作者
Jang, SoRi [1 ,2 ,5 ]
Nelson, Jessica C. [1 ,2 ,5 ]
Bend, Eric G. [3 ]
Rodriguez-Laureano, Lucelenie [1 ,2 ]
Tueros, Felipe G. [4 ]
Cartagenova, Luis [1 ,2 ]
Underwood, Katherine [1 ,2 ]
Jorgensen, Erik M. [3 ]
Colon-Ramos, Daniel A. [1 ,2 ,5 ]
机构
[1] Yale Univ, Sch Med, Dept Cell Biol, Program Cellular Neurosci Neurodegenerat & Repair, POB 9812, New Haven, CT 06536 USA
[2] Yale Univ, Sch Med, Dept Neurosci, POB 9812, New Haven, CT 06536 USA
[3] Univ Utah, Howard Hughes Med Inst, Dept Biol, Salt Lake City, UT 84112 USA
[4] Univ Ricardo Palma, Fac Ciencias Biol, Lab Microbiol, POB 1801, Lima 33, Peru
[5] Univ Puerto Rico, Inst Neurobiol, Recinto Ciencias Med, 201 Blvd Valle, San Juan, PR 00901 USA
基金
美国国家科学基金会;
关键词
NERVOUS-SYSTEM; METABOLISM; PROTEIN; ATP; MITOCHONDRIA; VESICLES; DIFFERENTIATION; COLOCALIZATION; DEHYDROGENASE; ORGANIZATION;
D O I
10.1016/j.neuron.2016.03.011
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Changes in neuronal activity create local and transient changes in energy demands at synapses. Here we discover a metabolic compartment that forms in vivo near synapses to meet local energy demands and support synaptic function in Caenorhabditis elegans neurons. Under conditions of energy stress, glycolytic enzymes redistribute from a diffuse localization in the cytoplasm to a punctate localization adjacent to synapses. Glycolytic enzymes colocalize, suggesting the ad hoc formation of a glycolysis compartment, or a "glycolytic metabolon,'' that can maintain local levels of ATP. Local formation of the glycolytic metabolon is dependent on presynaptic scaffolding proteins, and disruption of the glycolytic metabolon blocks the synaptic vesicle cycle, impairs synaptic recovery, and affects locomotion. Our studies indicate that under energy stress conditions, energy demands in C. elegans synapses are met locally through the assembly of a glycolytic metabolon to sustain synaptic function and behavior.
引用
收藏
页码:278 / 291
页数:14
相关论文
共 67 条
[1]  
Altun Z.F., 2016, BMC DEV BIOL, V8, P38
[2]   Endophilin Functions as a Membrane-Bending Molecule and Is Delivered to Endocytic Zones by Exocytosis [J].
Bai, Jihong ;
Hu, Zhitao ;
Dittman, Jeremy S. ;
Pym, Edward C. G. ;
Kaplan, Joshua M. .
CELL, 2010, 143 (03) :430-441
[3]   Brain Energy Metabolism: Focus on Astrocyte-Neuron Metabolic Cooperation [J].
Belanger, Mireille ;
Allaman, Igor ;
Magistretti, Pierre J. .
CELL METABOLISM, 2011, 14 (06) :724-738
[4]   EFFECT OF SODIUM AZIDE ON OXIDATION AND PHOSPHORYLATION PROCESSES IN RAT-LIVER MITOCHONDRIA [J].
BOGUCKA, K ;
WOJTCZAK, L .
BIOCHIMICA ET BIOPHYSICA ACTA, 1966, 122 (03) :381-&
[5]   INTERACTION OF MUSCLE GLYCOLYTIC-ENZYMES WITH THIN FILAMENT PROTEINS [J].
BRONSTEIN, WW ;
KNULL, HR .
CANADIAN JOURNAL OF BIOCHEMISTRY, 1981, 59 (07) :494-499
[6]   WHERE IS THE GLYCOLYTIC COMPLEX - A CRITICAL-EVALUATION OF PRESENT DATA FROM MUSCLE-TISSUE [J].
BROOKS, SPJ ;
STOREY, KB .
FEBS LETTERS, 1991, 278 (02) :135-138
[7]   Disturbed mitochondrial dynamics and neurodegenerative disorders [J].
Burte, Florence ;
Carelli, Valerio ;
Chinnery, Patrick F. ;
Yu-Wai-Man, Patrick .
NATURE REVIEWS NEUROLOGY, 2015, 11 (01) :11-24
[8]   Characterization of glycolytic enzyme interactions with murine erythrocyte membranes in wild-type and membrane protein knockout mice [J].
Campanella, M. Estela ;
Chu, Haiyan ;
Wandersee, Nancy J. ;
Peters, Luanne L. ;
Mohandas, Narla ;
Gilligan, Diana M. ;
Low, Philip S. .
BLOOD, 2008, 112 (09) :3900-3906
[9]   EFFECTS OF OLIGOMYCIN ON RESPIRATION AND SWELLING OF ISOLATED LIVER MITOCHONDRIA [J].
CHAPPELL, JB ;
GREVILLE, GD .
NATURE, 1961, 190 (477) :502-&
[10]   Central Presynaptic Terminals Are Enriched in ATP but the Majority Lack Mitochondria [J].
Chavan, Vrushali ;
Willis, Jeffery ;
Walker, Sidney K. ;
Clark, Helen R. ;
Liu, Xinran ;
Fox, Michael A. ;
Srivastava, Sarika ;
Mukherjee, Konark .
PLOS ONE, 2015, 10 (04)