SOME REFINEMENTS OF NUMERICAL RADIUS INEQUALITIES

被引:2
作者
Heydarbeygi, Z. [1 ]
Amyari, M. [1 ]
Khanehgir, M. [1 ]
机构
[1] Islamic Azad Univ, Mashhad Branch, Mashhad, Razavi Khorasan, Iran
关键词
D O I
10.1007/s11253-021-01879-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose some refinements for the second inequality in 1/2 parallel to A parallel to <= w(A) parallel to A parallel to, where A epsilon B(H). In particular, if A is hyponormal, then, by refining the Young inequality with the Kantorovich constant K(center dot, center dot), we show that w(A) <= 1/2 inf parallel to x parallel to=1 zeta(x) k vertical bar A vertical bar + vertical bar A vertical bar k. 1 2 k vertical bar A vertical bar + vertical bar A vertical bar k, where zeta(x) = K. h vertical bar A vertical bar x, xi h vertical bar A vertical bar x, xi, 2. r, r = min{lambda, 1 -lambda}, and 0 <= lambda <= 1. We also give a reverse for the classical numerical radius power inequality w(A(n)). wn(A) for any operator A epsilon B(H) in the case where n = 2.
引用
收藏
页码:1664 / 1674
页数:11
相关论文
共 14 条
[1]  
[Anonymous], 2003, J INEQUAL PURE APPL
[2]   A NOTE CONCERNING THE NUMERICAL RANGE OF A BASIC ELEMENTARY OPERATOR [J].
Boumazgour, Mohamed ;
Nabwey, Hossam A. .
ANNALS OF FUNCTIONAL ANALYSIS, 2016, 7 (03) :434-441
[3]  
Dragomir SS, 2008, TAMKANG J MATH, V39, P1
[4]  
DRAGOMIR S. S., 2016, Transyl. J. Math. Mec., V8, P45
[5]  
Dragomir SS, 2015, RGMIA RES REP COLLEC, V18
[6]   A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix [J].
Kittaneh, F .
STUDIA MATHEMATICA, 2003, 158 (01) :11-17
[7]   Reverse Young and Heinz inequalities for matrices [J].
Kittaneh, Fuad ;
Manasrah, Yousef .
LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (09) :1031-1037
[8]   Improved Young and Heinz inequalities for matrices [J].
Kittaneh, Fuad ;
Manasrah, Yousef .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 361 (01) :262-269
[9]  
Krein M.G., 1969, Functional Analysis and Its Applications, P73, DOI DOI 10.1007/BF01078278
[10]  
Ramesh G, 2017, ADV OPER THEORY, V2, P78, DOI 10.22034/aot.1611-1060