Universality of Asplund spaces

被引:5
作者
Hajek, Petr [1 ]
Lancien, Gilles
Montesinos, Vicente
机构
[1] Acad Sci Czech Republ, Math Inst, CR-11567 Prague 1, Czech Republic
[2] Univ Franche Comte, F-25030 Besancon, France
[3] Univ Politecn Valencia, Dept Math Appl, Telecommun Engn Fac, E-46071 Valencia, Spain
关键词
D O I
10.1090/S0002-9939-07-08780-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given any infinite cardinal tau, there exists no Banach space of density t, which is Asplund or has the Point of Continuity Property and is universal for all reflexive spaces of density tau.
引用
收藏
页码:2031 / 2035
页数:5
相关论文
共 16 条
[1]  
[Anonymous], CANADIAN MATH SOC BO
[2]  
[Anonymous], 1993, PITMAN MONOGRAPHS
[3]   ON WEAKLY LINDELOF BANACH-SPACES [J].
ARGYROS, S ;
MERCOURAKIS, S .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1993, 23 (02) :395-450
[4]   UNIVERSAL WCG BANACH-SPACES AND UNIVERSAL EBERLEIN COMPACTS [J].
ARGYROS, SA ;
BENYAMINI, Y .
ISRAEL JOURNAL OF MATHEMATICS, 1987, 58 (03) :305-320
[5]   Universal uniform Eberlein compact spaces [J].
Bell, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (07) :2191-2197
[7]  
Davis W. J., 1974, Journal of Functional Analysis, V17, P311, DOI 10.1016/0022-1236(74)90044-5
[8]  
FABIAN M, 1997, GATEAUX DIFFERENTIAB
[9]  
HAJEK P, UNPUB MONOGRAPH
[10]  
JECH TJ, 1978, SET THEORY