Image Denoising with BEMD and Edge-Preserving Self-Snake Model

被引:0
作者
Yan, Ting-qin [1 ]
Qu, Min [1 ]
Zhou, Chang-xiong [1 ]
机构
[1] Suzhou Vocat Univ, Dept Elect & Informat Engn, Suzhou 215104, Peoples R China
来源
INTELLIGENT COMPUTING THEORY | 2014年 / 8588卷
关键词
Image denoising; BEMD; Nonlocal gradient; Edge stopping function; BEMD_ESM; ANISOTROPIC DIFFUSION; DECOMPOSITION; FRAMEWORK; FILTER;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image denoising is important in digital image processing. In this paper, an image denoising method using edge-preserving self-snake model(ESM) and bidimensional empirical mode decomposition(BEMD) is presented. The ESM includes an edge stopping function which is constructed with nonlocal gradient having maximum peak only at edges and good tolerance for noise. This model can preserve edge information while removing noise from digital images. The BEMD transforms the image into intrinsic mode functions(IMFs) and residue. Different components of IMFs present different frequency of the image. we use ESM of the IMFs to filter noise. Finally, we reconstruct the image with the filtered IMFs and residue. Experiments show that this algorithm has a better result than ESM.
引用
收藏
页码:435 / 442
页数:8
相关论文
共 14 条
  • [1] Anbarjafari G., 2014, J ADV ELECT COMPUTER, V1, P14
  • [2] The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
    Huang, NE
    Shen, Z
    Long, SR
    Wu, MLC
    Shih, HH
    Zheng, QN
    Yen, NC
    Tung, CC
    Liu, HH
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1971): : 903 - 995
  • [3] General image denoising framework based on compressive sensing theory
    Jin, Jianqiu
    Yang, Bailing
    Liang, Kewei
    Wang, Xun
    [J]. COMPUTERS & GRAPHICS-UK, 2014, 38 : 382 - 391
  • [4] Progressive Image Denoising Through Hybrid Graph Laplacian Regularization: A Unified Framework
    Liu, Xianming
    Zhai, Deming
    Zhao, Debin
    Zhai, Guangtao
    Gao, Wen
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (04) : 1491 - 1503
  • [5] Nonlocal Transform-Domain Filter for Volumetric Data Denoising and Reconstruction
    Maggioni, Matteo
    Katkovnik, Vladimir
    Egiazarian, Karen
    Foi, Alessandro
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (01) : 119 - 133
  • [6] Image analysis by bidimensional empirical mode decomposition
    Nunes, JC
    Bouaoune, Y
    Delechelle, E
    Niang, O
    Bunel, P
    [J]. IMAGE AND VISION COMPUTING, 2003, 21 (12) : 1019 - 1026
  • [7] A new feature-preserving nonlinear anisotropic diffusion for denoising images containing blobs and ridges
    Qiu, Zhen
    Yang, Lei
    Lu, Weiping
    [J]. PATTERN RECOGNITION LETTERS, 2012, 33 (03) : 319 - 330
  • [8] Raj V. Naga Prudhvi, 2014, 2014 International Conference on Electronic Systems, Signal Processing and Computing Technologies (ICESC), P295, DOI 10.1109/ICESC.2014.56
  • [9] Automatic denoising of functional MM data: Combining independent component analysis and hierarchical fusion of classifiers
    Salimi-Khorshidi, Gholamreza
    Douaud, Gwenaelle
    Beckmann, Christian F.
    Glasser, Matthew F.
    Griffanti, Ludovica
    Smith, Stephen M.
    [J]. NEUROIMAGE, 2014, 90 : 449 - 468
  • [10] Application of an improved wavelet threshold denoising method for vibration signal processing
    Xie, Zhijie
    Song, Baoyu
    Zhang, Yang
    Zhang, Feng
    [J]. ENGINEERING SOLUTIONS FOR MANUFACTURING PROCESSES IV, PTS 1 AND 2, 2014, 889-890 : 799 - 806