Transcriptomics of Biostimulation of Plants Under Abiotic Stress

被引:54
|
作者
Gonzalez-Morales, Susana [1 ]
Solis-Gaona, Susana [2 ]
Valdes-Caballero, Marin Virgilio [2 ]
Juarez-Maldonado, Antonio [3 ]
Loredo-Trevino, Araceli [4 ]
Benavides-Mendoza, Adalberto [5 ]
机构
[1] Univ Autonoma Agr Antonio Narro, CONACYT, Saltillo, Coahuila, Mexico
[2] UPL, Saltillo, Coahuila, Mexico
[3] Univ Autonoma Agr Antonio Narro, Dept Bot, Saltillo, Coahuila, Mexico
[4] Univ Autonoma Coahuila, Dept Alimentos, Saltillo, Coahuila, Mexico
[5] Univ Autonoma Agr Antonio Narro, Dept Hort, Saltillo, Coahuila, Mexico
关键词
gene expression; PGPRs; macroalgae; peptides; humic acid; chitosan; selenium; silicon; ARABIDOPSIS-THALIANA GENES; GLUTATHIONE-S-TRANSFERASE; DROUGHT TOLERANCE; ABSCISIC-ACID; EXPRESSION ANALYSIS; SALINITY TOLERANCE; SALT TOLERANCE; OSMOTIC-STRESS; IN-VIVO; PHYSIOLOGICAL-RESPONSES;
D O I
10.3389/fgene.2021.583888
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Plant biostimulants are compounds, living microorganisms, or their constituent parts that alter plant development programs. The impact of biostimulants is manifested in several ways: via morphological, physiological, biochemical, epigenomic, proteomic, and transcriptomic changes. For each of these, a response and alteration occur, and these alterations in turn improve metabolic and adaptive performance in the environment. Many studies have been conducted on the effects of different biotic and abiotic stimulants on plants, including many crop species. However, as far as we know, there are no reviews available that describe the impact of biostimulants for a specific field such as transcriptomics, which is the objective of this review. For the commercial registration process of products for agricultural use, it is necessary to distinguish the specific impact of biostimulants from that of other legal categories of products used in agriculture, such as fertilizers and plant hormones. For the chemical or biological classification of biostimulants, the classification is seen as a complex issue, given the great diversity of compounds and organisms that cause biostimulation. However, with an approach focused on the impact on a particular field such as transcriptomics, it is perhaps possible to obtain a criterion that allows biostimulants to be grouped considering their effects on living systems, as well as the overlap of the impact on metabolism, physiology, and morphology occurring between fertilizers, hormones, and biostimulants.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] The biochemistry of Mediterranean plants under abiotic stress
    Siracusa, Laura
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [2] Editorial: The role of stress proteins in plants under abiotic stress
    Zhou, Peng
    Graether, Steffen P. P.
    Hu, Longxing
    Zhang, Wanjun
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [3] Lipidomics in Plants Under Abiotic Stress Conditions: An Overview
    Henschel, Juliane Maciel
    de Andrade, Antonio Nunes
    dos Santos, Josefa Bruna Lima
    da Silva, Rodrigo Ribeiro
    da Mata, Djair Alves
    Souza, Tancredo
    Batista, Diego Silva
    AGRONOMY-BASEL, 2024, 14 (08):
  • [4] Nutrient use efficiency of plants under abiotic stress
    Liang, Bo-Wen
    Li, Chao
    Bai, Tuan-Hui
    Wang, Ping
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [5] ROS and NO Regulation by Melatonin Under Abiotic Stress in Plants
    Pardo-Hernandez, Miriam
    Lopez-Delacalle, Maria
    Rivero, Rosa M.
    ANTIOXIDANTS, 2020, 9 (11) : 1 - 23
  • [6] Chemical signaling under abiotic stress environment in plants
    Tuteja, Narendra
    Sopory, Sudhir K.
    PLANT SIGNALING & BEHAVIOR, 2008, 3 (08) : 525 - 536
  • [7] Abiotic stress in plants
    Oliver, M
    PHYSIOLOGIA PLANTARUM, 2001, 112 (02) : 151 - 151
  • [8] A brief appraisal of ethylene signaling under abiotic stress in plants
    Husain, Tajammul
    Fatima, Abreeq
    Suhel, Mohammad
    Singh, Samiksha
    Sharma, Anket
    Prasad, Sheo Mohan
    Singh, Vijay Pratap
    PLANT SIGNALING & BEHAVIOR, 2020, 15 (09)
  • [9] Interrelations of nutrient and water transporters in plants under abiotic stress
    Barzana, Gloria
    Rios, Juan J.
    Lopez-Zaplana, Alvaro
    Nicolas-Espinosa, Juan
    Yepes-Molina, Lucia
    Garcia-Ibanez, Paula
    Carvajal, Micaela
    PHYSIOLOGIA PLANTARUM, 2021, 171 (04) : 595 - 619
  • [10] Plant sugars: Homeostasis and transport under abiotic stress in plants
    Saddhe, Ankush A.
    Manuka, Rakesh
    Penna, Suprasanna
    PHYSIOLOGIA PLANTARUM, 2021, 171 (04) : 739 - 755