Comparing the Health Effects of Ambient Particulate Matter Estimated Using Ground-Based versus Remote Sensing Exposure Estimates

被引:96
|
作者
Jerrett, Michael [1 ]
Turner, Michelle C. [2 ,3 ,4 ,5 ]
Beckerman, Bernardo S. [6 ]
Pope, C. Arden, III [7 ]
van Donkelaar, Aaron [8 ]
Martin, Randall V. [8 ]
Serre, Marc [9 ]
Crouse, Dan [10 ]
Gapstur, Susan M. [11 ]
Krewski, Daniel [2 ,12 ]
Diver, W. Ryan [11 ]
Coogan, Patricia F. [13 ]
Thurston, George D. [14 ]
Burnett, Richard T. [15 ]
机构
[1] Univ Calif Los Angeles, Dept Environm Hlth Sci, Fielding Sch Publ Hlth, Los Angeles, CA USA
[2] Univ Ottawa, McLaughlin Ctr Populat Hlth Risk Assessment, Ottawa, ON, Canada
[3] Ctr Res Environm Epidemiol CREAL, ISGlobal, Barcelona, Spain
[4] Univ Pompeu Fabra, Barcelona, Spain
[5] CIBER Epidemiol & Salud Publ CIBERESP, Madrid, Spain
[6] Univ Calif Berkeley, Dept Publ Hlth, Div Environm Hlth Sci, Berkeley, CA 94720 USA
[7] Brigham Young Univ, Dept Econ, Provo, UT 84602 USA
[8] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS, Canada
[9] Univ North Carolina Chapel Hill, Sch Publ Hlth, Dept Environm Sci & Engn, Chapel Hill, NC USA
[10] Univ New Brunswick, New Brunswick Inst Res Data & Training, Dept Sociol, Fredericton, NB, Canada
[11] Amer Canc Soc, Epidemiol Res Program, Atlanta, GA 30329 USA
[12] Univ Ottawa, Dept Epidemiol & Community Med, Ottawa, ON, Canada
[13] Boston Univ, Slone Epidemiol Ctr, Boston, MA 02215 USA
[14] NYU, Sch Med, Tuxedo Pk, NY USA
[15] Hlth Canada, Populat Studies Div, Ottawa, ON, Canada
基金
美国国家卫生研究院;
关键词
LONG-TERM EXPOSURE; LAND-USE REGRESSION; AEROSOL OPTICAL DEPTH; AIR-POLLUTION; CANCER PREVENTION; SPATIAL-ANALYSIS; OZONE EXPOSURE; LUNG-CANCER; MORTALITY; SATELLITE;
D O I
10.1289/EHP575
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
BACKGROUND: Remote sensing (RS) is increasingly used for exposure assessment in epidemiological and burden of disease studies, including those investigating whether chronic exposure to ambient fine particulate matter (PM2.5) is associated with mortality. OBJECTIVES: We compared relative risk estimates of mortality from diseases of the circulatory system for PM2.5 modeled from RS with that for PM2.5 modeled using ground-level information. METHODS: We geocoded the baseline residence of 668,629 American Cancer Society Cancer Prevention Study II (CPS-II) cohort participants followed from 1982 to 2004 and assigned PM2.5 levels to all participants using seven different exposure models. Most of the exposure models were averaged for the years 2002-2004, and one RS estimate was for a longer, contemporaneous period. We used Cox proportional hazards regression to estimate relative risks (RRs) for the association of PM2.5 with circulatory mortality and ischemic heart disease. RESULTS: Estimates of mortality risk differed among exposure models. The smallest relative risk was observed for the RS estimates that excluded ground-based monitors for circulatory deaths [RR=1.02, 95% confidence interval (CI): 1.00, 1.04 per 10 mu g/m(3) increment in PM2.5]. The largest relative risk was observed for the land-use regression model that included traffic information (RR=1.14, 95% CI: 1.11, 1.17 per 10 mu g/m(3) increment in PM2.5). CONCLUSIONS: We found significant associations between PM2.5 and mortality in every model; however, relative risks estimated from exposure models using ground-based information were generally larger than those estimated using RS alone.
引用
收藏
页码:552 / 559
页数:8
相关论文
共 33 条
  • [1] Remote sensing of exposure to NO2: Satellite versus ground-based measurement in a large urban
    Bechle, Matthew J.
    Millet, Dylan B.
    Marshall, Julian D.
    ATMOSPHERIC ENVIRONMENT, 2013, 69 : 345 - 353
  • [2] Monitoring particulate matters in urban areas in Malaysia using remote sensing and ground-based measurements
    Kanniah, K. D.
    Zaman, Nurul Amalin Fatihah Kamarul
    Lim, H. Q.
    Reba, Mohd Nadzri Md.
    REMOTE SENSING OF CLOUDS AND THE ATMOSPHERE XIX AND OPTICS IN ATMOSPHERIC PROPAGATION AND ADAPTIVE SYSTEMS XVII, 2014, 9242
  • [3] Remote sensing of atmospheric particulate mass of dry PM2.5 near the ground: Method validation using ground-based measurements
    Li, Zhengqiang
    Zhang, Ying
    Shao, Jie
    Li, Baosheng
    Hong, Jin
    Liu, Dong
    Li, Donghui
    Wei, Peng
    Li, Wei
    Li, Lei
    Zhang, Fengxia
    Guo, Jie
    Deng, Qian
    Wang, Bangxin
    Cui, Chaolong
    Zhang, Wanchun
    Wang, Zhenzhu
    Lv, Yang
    Xu, Hua
    Chen, Xingfeng
    Li, Li
    Qie, Lili
    REMOTE SENSING OF ENVIRONMENT, 2016, 173 : 59 - 68
  • [4] Ecological Study on Global Health Effects due to Source-Specific Ambient Fine Particulate Matter Exposure
    Zhang, Xiaole
    Chen, Xi
    Yue, Yang
    Wang, Shuxiao
    Zhao, Bin
    Huang, Xinmei
    Li, Tiantian
    Sun, Qinghua
    Wang, Jing
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2023, 57 (03) : 1278 - 1291
  • [5] Estimated Long-Term (1981-2016) Concentrations of Ambient Fine Particulate Matter across North America from Chemical Transport Modeling, Satellite Remote Sensing, and Ground-Based Measurements
    Meng, Jun
    Li, Chi
    Martin, Randall V.
    van Donkelaar, Aaron
    Hystad, Perry
    Brauer, Michael
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2019, 53 (09) : 5071 - 5079
  • [6] A semi-empirical model for predicting hourly ground-level fine particulate matter (PM2.5) concentration in southern Ontario from satellite remote sensing and ground-based meteorological measurements
    Tian, Jie
    Chen, Dongmei
    REMOTE SENSING OF ENVIRONMENT, 2010, 114 (02) : 221 - 229
  • [7] Estimates of remote sensing retrieval errors by the GRASP algorithm: application to ground-based observations, concept and validation
    Herrera, Milagros E.
    Dubovik, Oleg
    Torres, Benjamin
    Lapyonok, Tatyana
    Fuertes, David
    Lopatin, Anton
    Litvinov, Pavel
    Chen, Cheng
    Benavent-Oltra, Jose Antonio
    Bali, Juan L.
    Ristori, Pablo R.
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2022, 15 (20) : 6075 - 6126
  • [8] SPARTAN: a global network to evaluate and enhance satellite-based estimates of ground-level particulate matter for global health applications
    Snider, G.
    Weagle, C. L.
    Martin, R. V.
    van Donkelaar, A.
    Conrad, K.
    Cunningham, D.
    Gordon, C.
    Zwicker, M.
    Akoshile, C.
    Artaxo, P.
    Anh, N. X.
    Brook, J.
    Dong, J.
    Garland, R. M.
    Greenwald, R.
    Griffith, D.
    He, K.
    Holben, B. N.
    Kahn, R.
    Koren, I.
    Lagrosas, N.
    Lestari, P.
    Ma, Z.
    Martins, J. Vanderlei
    Quel, E. J.
    Rudich, Y.
    Salam, A.
    Tripathi, S. N.
    Yu, C.
    Zhang, Q.
    Zhang, Y.
    Brauer, M.
    Cohen, A.
    Gibson, M. D.
    Liu, Y.
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2015, 8 (01) : 505 - 521
  • [9] A CAUSAL EXPOSURE RESPONSE FUNCTION WITH LOCAL ADJUSTMENT FOR CONFOUNDING: ESTIMATING HEALTH EFFECTS OF EXPOSURE TO LOW LEVELS OF AMBIENT FINE PARTICULATE MATTER
    Papadogeorgou, Georgia
    Dominici, Francesca
    ANNALS OF APPLIED STATISTICS, 2020, 14 (02) : 850 - 871
  • [10] Comparing the lung cancer burden of ambient particulate matter using scenarios of air quality standards versus acceptable risk levels
    Castro, Alberto
    Goetschi, Thomas
    Achermann, Beat
    Baltensperger, Urs
    Buchmann, Brigitte
    Dietrich, Denise Felber
    Flueckiger, Alexandre
    Geiser, Marianne
    Purghart, Brigitte Gaelli
    Gygax, Hans
    Joss, Meltem Kutlar
    Luethi, Lara Milena
    Probst-Hensch, Nicole
    Straehl, Peter
    Kuenzli, Nino
    INTERNATIONAL JOURNAL OF PUBLIC HEALTH, 2020, 65 (02) : 139 - 148