Reliability of structures in high dimensions, part I:: algorithms and applications

被引:298
作者
Koutsourelakis, PS [1 ]
Pradlwarter, HJ [1 ]
Schuëller, GI [1 ]
机构
[1] Univ Innsbruck, Inst Engn Mech, A-6020 Innsbruck, Austria
基金
澳大利亚研究理事会; 奥地利科学基金会;
关键词
reliability; simulation; line sampling; Markov chain Monte Carlo;
D O I
10.1016/j.probengmech.2004.05.001
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The present paper is concerned with the estimation of structural reliability when a large number of random variables is present. A sampling technique which uses lines in order to probe the failure domain, is presented. The latter is employed in conjunction with a stepwise procedure which makes use of Markov Chains. The resulting algorithm exhibits accelerated convergence. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:409 / 417
页数:9
相关论文
共 13 条
[1]   A new adaptive importance sampling scheme for reliability calculations [J].
Au, SK ;
Beck, JL .
STRUCTURAL SAFETY, 1999, 21 (02) :135-158
[2]   Estimation of small failure probabilities in high dimensions by subset simulation [J].
Au, SK ;
Beck, JL .
PROBABILISTIC ENGINEERING MECHANICS, 2001, 16 (04) :263-277
[3]   First excursion probabilities for linear systems by very efficient importance sampling [J].
Au, SK ;
Beck, JL .
PROBABILISTIC ENGINEERING MECHANICS, 2001, 16 (03) :193-207
[4]  
BESAG J., 2001, Markov Chain Monte Carlo for Statistical Inference
[5]  
KATAYFYGIOTIS L, 2003, P 5 INT C STOCH STRU
[6]  
KOUTSOURELAKIS PS, 2003, P APPL MATH MECH, V3, P495, DOI DOI 10.1002/pamm.200310517
[7]  
Liu J. S., 2001, Monte Carlo strategies in scientific computing
[8]  
Mengersen KL, 1996, ANN STAT, V24, P101
[9]  
MOLLER J, 1999, NOTES MARKOV CHAIN M
[10]  
SCHENK CA, 2003, EL P 16 ASCE ENG MEC