Advanced Oxidation Processes Coupled with Nanomaterials for Water Treatment

被引:62
作者
Cardoso, Ines M. F. [1 ]
Cardoso, Rita M. F. [1 ]
da Silva, Joaquim C. G. Esteves [1 ]
机构
[1] Univ Porto FCUP, Fac Sci, DGAOT, Chem Res Unit CIQUP, Rua Campo Alegre 697, P-4169007 Porto, Portugal
关键词
AOPs; water treatment; nanomaterials; UV treatments; ozone; hydrogen peroxide; persulfate; chlorine; monochloramine; photocatalysis; ZERO-VALENT IRON; WASTE-WATER; PHOTOCATALYTIC DEGRADATION; AQUEOUS-SOLUTIONS; P-NITROPHENOL; EFFICIENCY; PERFORMANCE; SYSTEM; TRANSFORMATION; REMEDIATION;
D O I
10.3390/nano11082045
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Water quality management will be a priority issue in the near future. Indeed, due to scarcity and/or contamination of the water, regulatory frameworks will be increasingly strict to reduce environmental impacts of wastewater and to allow water to be reused. Moreover, drinking water quality standards must be improved in order to account for the emerging pollutants that are being detected in tap water. These tasks can only be achieved if new improved and sustainable water treatment technologies are developed. Nanomaterials are improving the ongoing research on advanced oxidation processes (AOPs). This work reviews the most important AOPs, namely: persulfate, chlorine and NH2Cl based processes, UV/H2O2, Fenton processes, ozone, and heterogeneous photocatalytic processes. A critical review of the current coupling of nanomaterials to some of these AOPs is presented. Besides the active role of the nanomaterials in the degradation of water contaminants/pollutants in the AOPs, the relevance of their adsorbent/absorbent function in these processes is also discussed.
引用
收藏
页数:13
相关论文
共 74 条
[1]   Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability [J].
Adeleye, Adeyemi S. ;
Conway, Jon R. ;
Garner, Kendra ;
Huang, Yuxiong ;
Su, Yiming ;
Keller, Arturo A. .
CHEMICAL ENGINEERING JOURNAL, 2016, 286 :640-662
[2]  
Ameta R, 2018, ADVANCED OXIDATION PROCESSES FOR WASTEWATER TREATMENT: EMERGING GREEN CHEMICAL TECHNOLOGY, P49, DOI 10.1016/B978-0-12-810499-6.00003-6
[3]  
Ameta R, 2018, ADVANCED OXIDATION PROCESSES FOR WASTEWATER TREATMENT: EMERGING GREEN CHEMICAL TECHNOLOGY, P135, DOI 10.1016/B978-0-12-810499-6.00006-1
[4]  
Ameta SC, 2018, ADVANCED OXIDATION PROCESSES FOR WASTEWATER TREATMENT: EMERGING GREEN CHEMICAL TECHNOLOGY, P1, DOI 10.1016/B978-0-12-810499-6.00001-2
[5]   Effect of NaBH4 on properties of nanoscale zero-valent iron and its catalytic activity for reduction of p-nitrophenol [J].
Bae, Sungjun ;
Gim, Suji ;
Kim, Hyungjun ;
Hanna, Khalil .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2016, 182 :541-549
[6]   Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges [J].
Baig, Nadeem ;
Kammakakam, Irshad ;
Falath, Wail .
MATERIALS ADVANCES, 2021, 2 (06) :1821-1871
[7]   Nanomaterials-based advanced oxidation processes for wastewater treatment: A review [J].
Bethi, Bhaskar ;
Sonawane, Shirish H. ;
Bhanvase, Bharat A. ;
Gumfekar, Sarang P. .
CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2016, 109 :178-189
[8]   Wastewater treatment by means of advanced oxidation processes at basic pH conditions: A review [J].
Boczkaj, Grzegorz ;
Fernandes, Andre .
CHEMICAL ENGINEERING JOURNAL, 2017, 320 :608-633
[9]   Insight into carbamazepine degradation by UV/monochloramine: Reaction mechanism, oxidation products, and DBPs formation [J].
Bu, Lingjun ;
Zhou, Shiqing ;
Zhu, Shumin ;
Wu, Yangtao ;
Duan, Xiaodi ;
Shi, Zhou ;
Dionysiou, Dionysios D. .
WATER RESEARCH, 2018, 146 :288-297
[10]   An overview of nanomaterials applied for removing dyes from wastewater [J].
Cai, Zhengqing ;
Sun, Youmin ;
Liu, Wen ;
Pan, Fei ;
Sun, Peizhe ;
Fu, Jie .
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2017, 24 (19) :15882-15904