3D Bioprinting Constructs to Facilitate Skin Regeneration

被引:55
作者
Daikuara, Luciana Y. [1 ]
Chen, Xifang [1 ]
Yue, Zhilian [1 ]
Skropeta, Danielle [2 ,3 ]
Wood, Fiona M. [4 ,5 ,6 ,7 ]
Fear, Mark W. [6 ,7 ]
Wallace, Gordon G. [1 ]
机构
[1] Univ Wollongong, ARC Ctr Excellence Elect Sci, Intelligent Polymer Res Inst, Innovat Campus, Wollongong, NSW, Australia
[2] Univ Wollongong, Fac Sci Med & Hlth SMAH & Mol Horizons, Sch Chem & Mol Biosci, Wollongong, NSW, Australia
[3] Illawarra Hlth & Med Res Inst, Wollongong, NSW, Australia
[4] Univ Western Australia, Sch Biomed Sci, Crawley, WA, Australia
[5] Perth Childrens Hosp, Fiona Stanley Hosp, Burns Serv Western Australia, Nedlands, WA, Australia
[6] Fiona Stanley Hosp, Fiona Wood Fdn, Murdoch, WA, Australia
[7] Univ Western Australia, Burn Injury Res Unit, Crawley, WA, Australia
基金
澳大利亚研究理事会;
关键词
3D bioprinting; bioinks; biomaterial; skin cells; skin equivalent; CULTURED EPITHELIAL AUTOGRAFT; EPIDERMAL-GROWTH-FACTOR; PLATELET-RICH PLASMA; MESENCHYMAL STEM-CELLS; DIABETIC FOOT ULCERS; IN-VITRO; BIOFABRICATION STRATEGIES; FUNCTIONAL-PROPERTIES; CHRONIC WOUNDS; LEG ULCERS;
D O I
10.1002/adfm.202105080
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In the last decade, the advent of 3D printing for tissue engineering and regenerative medicine has engendered great interest for those involved in skin repair and regeneration. 3D bioprinting allows spatial distribution of skin cells into predefined custom-made structures to produce living skin mimics on the bench for grafting or drug testing. The key aspect of 3D bioprinting lies in the formulation of printable bioinks serving as matrix mimics to house skin cells, alongside an appropriate combination of cells. In this review, bioink formulations, cell combinations, as well as manufacturing methods exploited to develop 3D bioprinted constructs for skin regeneration are summarized. Issues to do with the selection of suitable materials and cells to ensure the functionality of the resulting skin constructs and fabrication of skin appendages are also addressed.
引用
收藏
页数:24
相关论文
共 225 条
  • [41] Dermal Matrices and Bioengineered Skin Substitutes: A Critical Review of Current Options
    Debels, Heidi
    Hamdi, Moustapha
    Abberton, Keren
    Morrison, Wayne
    [J]. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN, 2015, 3 (01)
  • [42] Derr K, 2019, TISSUE ENG PART C-ME, V25, P334, DOI [10.1089/ten.tec.2018.0318, 10.1089/ten.TEC.2018.0318]
  • [43] Validation of an implantable bioink using mechanical extraction of human skin cells: First steps to a 3D bioprinting treatment of deep second degree burn
    Desanlis, Adeline
    Albouy, Marion
    Rousselle, Patricia
    Thepot, Amelie
    Dos Santos, Morgan
    Auxenfans, Celine
    Marquette, Christophe
    [J]. JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2021, 15 (01) : 37 - 48
  • [44] A COMPOSITE SKIN SUBSTITUTE (GRAFTSKIN) FOR SURGICAL WOUNDS - A CLINICAL-EXPERIENCE
    EAGLSTEIN, WH
    IRIONDO, M
    LASZLO, K
    [J]. DERMATOLOGIC SURGERY, 1995, 21 (10) : 839 - 843
  • [45] Platelet Lysate Induces In Vitro Wound Healing of Human Keratinocytes Associated with a Strong Proinflammatory Response
    El Backly, Rania
    Ulivi, Valentina
    Tonachini, Laura
    Cancedda, Ranieri
    Descalzi, Fiorella
    Mastrogiacomo, Maddalena
    [J]. TISSUE ENGINEERING PART A, 2011, 17 (13-14) : 1787 - 1800
  • [46] Rapid healing of venous ulcers and lack of clinical rejection with an allogeneic cultured human skin equivalent
    Falanga, V
    Margolis, D
    Alvarez, O
    Auletta, M
    Maggiacomo, F
    Altman, M
    Jensen, J
    Sabolinski, M
    Hardin-Young, J
    [J]. ARCHIVES OF DERMATOLOGY, 1998, 134 (03) : 293 - 300
  • [47] Falanga V, 2007, PRINCIPLES OF TISSUE ENGINEERING, 3RD EDITION, P1167, DOI 10.1016/B978-012370615-7/50081-0
  • [48] Patient-Specific Bioinks for 3D Bioprinting of Tissue Engineering Scaffolds
    Faramarzi, Negar
    Yazdi, Iman K.
    Nabavinia, Mahboubeh
    Gemma, Andrea
    Fanelli, Adele
    Caizzone, Andrea
    Ptaszek, Leon M.
    Sinha, Indranil
    Khademhosseini, Ali
    Ruskin, Jeremy N.
    Tamayol, Ali
    [J]. ADVANCED HEALTHCARE MATERIALS, 2018, 7 (11)
  • [49] The α-L-Rhamnose recognizing lectin site of human dermal fibroblasts functions as a signal transducer Modulation of Ca2+ fluxes and gene expression
    Faury, Gilles
    Ruszova, E.
    Molinari, J.
    Mariko, B.
    Raveaud, S.
    Velebny, V.
    Robert, L.
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2008, 1780 (12): : 1388 - 1394
  • [50] Fedorovich NE, 2012, TISSUE ENG PART C-ME, V18, P33, DOI [10.1089/ten.tec.2011.0060, 10.1089/ten.TEC.2011.0060]