Steady states with unbounded mass of the Keller-Segel system

被引:16
|
作者
Pistoia, Angela [1 ]
Vaira, Giusi [1 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Sci Base & Applicate Ingn, I-00185 Rome, Italy
关键词
PARABOLIC-ELLIPTIC SYSTEM; RADIAL SOLUTIONS; POINT DYNAMICS; CHEMOTAXIS; DIFFUSION; EXISTENCE; BEHAVIOR; LIMIT; MODEL;
D O I
10.1017/S0308210513000619
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the boundary-value problem -Delta u+u = lambda e(u) in B-r0, partial derivative(nu)u = 0 on partial derivative B-r0, where B-r0 is the ball of radius ro in R-N, N >= 2, lambda > 0 and v is the outer normal derivative at partial derivative B-r0. This problem is equivalent to the stationary Keller Segel system from chemotaxis. We show the existence of a solution concentrating at the boundary of the ball as lambda goes to 0.
引用
收藏
页码:203 / 222
页数:20
相关论文
共 50 条