New results on controllability in the framework of fractional integrodifferential equations with nondense domain

被引:50
作者
Jothimani, K. [1 ]
Kaliraj, K. [2 ]
Hammouch, Zakia [3 ]
Ravichandran, C. [4 ]
机构
[1] Sri Eshwar Coll Engn Autonomous, Dept Math, Coimbatore 641202, Tamil Nadu, India
[2] Univ Madras, Ramanujan Inst Adv Study Math, Chennai 600005, Tamil Nadu, India
[3] Fac Sci & Tech Errachidia, Dept Math, BP 509, Errachidia 52000, Morocco
[4] Kongunadu Arts & Sci Coll Autonomous, PG & Res Dept Math, Coimbatore 641029, Tamil Nadu, India
关键词
DIFFERENTIAL-INCLUSIONS; EXISTENCE;
D O I
10.1140/epjp/i2019-12858-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This study reveals the fractional integrodifferential equation with nondense nature in the Banach space. We acknowledge the existence of a control term by the Monch fixed point theorem and noncompact measure. An illustration is offered to validate our analytical results.
引用
收藏
页数:10
相关论文
共 40 条
[11]  
Brzezinski DariuszW., 2017, Appl. Math. Nonlinear Sci., V2, P237, DOI DOI 10.21042/AMNS.2017.1.00020
[12]   Fractional dynamical model for the generation of ECG like signals from filtered coupled Van-der Pol oscillators [J].
Das, Saptarshi ;
Maharatna, Koushik .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2013, 112 (03) :490-507
[13]   Controllability of non-densely defined neutral functional differential systems in abstract space [J].
Fu, Xianlong ;
Liu, Xingbo .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2007, 28 (02) :243-252
[14]   On solutions of neutral nonlocal evolution equations with nondense domain [J].
Fu, XL .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 299 (02) :392-410
[15]   Controllability results for nondensely defined evolution differential inclusions with nonlocal conditions [J].
Gatsori, EP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 297 (01) :194-211
[16]  
Henderson J, 2007, INT J APPL MATH STAT, V9, P35
[17]  
Hilfer R., 2000, APPL FRACTIONAL CALC
[18]   Controllability of non-densely defined impulsive neutral functional differential systems with infinite delay in Banach spaces [J].
Kavitha, V. ;
Arjunan, M. Mallika .
NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2010, 4 (03) :441-450
[19]  
Kilbas AA, 2006, N HOLLAND MATH STUDI, V204
[20]  
Kuchee K. D., 2016, NONLINEAR STUD, V23, P651