Numerical approximation of the nonlinear time-fractional telegraph equation arising in neutron transport

被引:50
作者
Nikan, O. [1 ]
Avazzadeh, Z. [2 ]
Machado, J. A. Tenreiro [3 ]
机构
[1] Iran Univ Sci & Technol, Sch Math, Tehran, Iran
[2] Xian Jiaotong Liverpool Univ, Dept Appl Math, Suzhou 215123, Peoples R China
[3] Polytech Porto, ISEP Inst Engn, Dept Elect Engn, Porto, Portugal
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2021年 / 99卷
关键词
Fractional telegraph equation; Caputo fractional derivative; RBF; LRBF-FD; Convergence; Stability; RADIAL BASIS FUNCTIONS; LOCAL INTEGRATION; MESHLESS METHOD; SCHEME; DIFFUSION; CONVERGENCE; INTERPOLATION; MULTIQUADRICS; STABILITY; WAVELETS;
D O I
10.1016/j.cnsns.2021.105755
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper focusses on the numerical solution of the nonlinear time-fractional telegraph equation formulated in the Caputo sense. This model is a useful description of the neutron transport process inside the core of a nuclear reactor. The proposed method approximates the unknown solution with the help of two main stages. At a first stage, a semi-discrete algorithm is obtained by means of a difference approach with the accuracy O(tau(3-beta)), where 1 < beta < 2 is the fractional-order derivative. At a second stage, a full-discretization is obtained by an efficient augmented local radial basis function finite difference (LRBF-FD). This method approximates the derivatives of an unknown function at a given point named as center, based on the finite difference at each local-support domain, instead of applying the entire set of points. The technique produces a sparse matrix system, reduces the computational effort and avoids the ill-conditioning derived from the global collocation. The unconditional stability and convergence of the time-discretized formulation are demonstrated and confirmed numerically. The numerical results highlight the accuracy and the validity of the method. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] APPROXIMATION OF AN OPTIMAL CONTROL PROBLEM FOR THE TIME-FRACTIONAL FOKKER-PLANCK EQUATION
    Camilli, Fabio
    Duisembay, Serikbolsyn
    Tang, Qing
    JOURNAL OF DYNAMICS AND GAMES, 2021, 8 (04): : 381 - 402
  • [32] A Numerical Method for the Solution of the Time-Fractional Diffusion Equation
    Ferras, Luis L.
    Ford, Neville J.
    Morgado, Maria L.
    Rebelo, Magda
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2014, PT 1, 2014, 8579 : 117 - 131
  • [33] NUMERICAL APPROXIMATION OF STOCHASTIC TIME-FRACTIONAL DIFFUSION
    Jin, Bangti
    Yan, Yubin
    Zhou, Zhi
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 53 (04): : 1245 - 1268
  • [34] A HIGHER-ORDER APPROACH FOR TIME-FRACTIONAL GENERALIZED BURGERS' EQUATION
    Taneja, Komal
    Deswal, Komal
    Kumar, Devendra
    Baleanu, Dumitru
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (07)
  • [36] A numerical approach for nonlinear time-fractional diffusion equation with generalized memory kernel
    Seal, Aniruddha
    Natesan, Srinivasan
    NUMERICAL ALGORITHMS, 2024, 97 (02) : 539 - 565
  • [37] L1/LDG method for the generalized time-fractional Burgers equation
    Li, Changpin
    Li, Dongxia
    Wang, Zhen
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 187 : 357 - 378
  • [38] An accurate numerical method and its analysis for time-fractional Fisher’s equation
    Roul, Pradip
    Rohil, Vikas
    Soft Computing, 2024, 28 (19) : 11495 - 11514
  • [39] Error estimate of virtual element approximation for loaded time-fractional Hallaire's equation
    Abbaszadeh, Mostafa
    Dehghan, Mehdi
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2025, : 4475 - 4502
  • [40] The numerical solution for the time-fractional inverse problem of diffusion equation
    Shivanian, Elyas
    Jafarabadi, Ahmad
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2018, 91 : 50 - 59