Numerical approximation of the nonlinear time-fractional telegraph equation arising in neutron transport

被引:50
作者
Nikan, O. [1 ]
Avazzadeh, Z. [2 ]
Machado, J. A. Tenreiro [3 ]
机构
[1] Iran Univ Sci & Technol, Sch Math, Tehran, Iran
[2] Xian Jiaotong Liverpool Univ, Dept Appl Math, Suzhou 215123, Peoples R China
[3] Polytech Porto, ISEP Inst Engn, Dept Elect Engn, Porto, Portugal
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2021年 / 99卷
关键词
Fractional telegraph equation; Caputo fractional derivative; RBF; LRBF-FD; Convergence; Stability; RADIAL BASIS FUNCTIONS; LOCAL INTEGRATION; MESHLESS METHOD; SCHEME; DIFFUSION; CONVERGENCE; INTERPOLATION; MULTIQUADRICS; STABILITY; WAVELETS;
D O I
10.1016/j.cnsns.2021.105755
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper focusses on the numerical solution of the nonlinear time-fractional telegraph equation formulated in the Caputo sense. This model is a useful description of the neutron transport process inside the core of a nuclear reactor. The proposed method approximates the unknown solution with the help of two main stages. At a first stage, a semi-discrete algorithm is obtained by means of a difference approach with the accuracy O(tau(3-beta)), where 1 < beta < 2 is the fractional-order derivative. At a second stage, a full-discretization is obtained by an efficient augmented local radial basis function finite difference (LRBF-FD). This method approximates the derivatives of an unknown function at a given point named as center, based on the finite difference at each local-support domain, instead of applying the entire set of points. The technique produces a sparse matrix system, reduces the computational effort and avoids the ill-conditioning derived from the global collocation. The unconditional stability and convergence of the time-discretized formulation are demonstrated and confirmed numerically. The numerical results highlight the accuracy and the validity of the method. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:22
相关论文
共 50 条