Thermal Failure Propagation in Lithium-Ion Battery Modules with Various Shapes

被引:38
作者
Ouyang, Dongxu [1 ]
Liu, Jiahao [2 ]
Chen, Mingyi [3 ]
Weng, Jingwen [4 ]
Wang, Jian [1 ]
机构
[1] Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230022, Anhui, Peoples R China
[2] Shanghai Maritime Univ, Coll Ocean Sci & Engn, Shanghai 201306, Peoples R China
[3] Jiangsu Univ, Sch Environm & Safety Engn, Zhenjiang 212013, Peoples R China
[4] Fuzhou Univ, Sch Environm & Resources, Fuzhou 350116, Fujian, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2018年 / 8卷 / 08期
基金
国家重点研发计划;
关键词
battery module; thermal failure propagation; discharging treatment; module shape; surface temperature; mass loss; PHASE-CHANGE MATERIAL; RUNAWAY PROPAGATION; MANAGEMENT-SYSTEM; PACK; HAZARDS; PERFORMANCE; COMPOSITE; CELLS;
D O I
10.3390/app8081263
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Thermal failure propagation is one of the most severe challenges for battery modules and it usually aggravates the thermal hazards, further resulting in serious accidents. This work conducted two groups of experiments to investigate the influence of discharging treatment and module shape on the thermal failure propagation of battery modules, where the triangle module, rectangle module, parallelogram module, line module, hexagon module, and square module were researched. Based on the results, it can be found that an evident domino effect existed on the thermal failure propagation of battery modules. Namely, the failure propagation process consisted of several phases and the number of phases depended on the shape of the module. Besides, it is indicated that discharging treatment on a battery module when it was in a high-temperature environment would aggravate its thermal failure propagation by bringing an earlier thermal failure, a quicker failure propagation, and a larger mass loss. Combining the results of safety and space utilization, it is revealed that the triangular module may be the best choice of battery module due to its smaller failure propagation speed and higher space utilization.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Suppressing thermal runaway propagation of nickel-rich Lithium-ion battery modules using silica aerogel sheets
    Tang, Jin
    Wu, Xinyuan
    Ren, Jian
    Min, Huihua
    Liu, Xiaomin
    Kong, Yong
    Che, Peipei
    Zhai, Wei
    Yang, Hui
    Shen, Xiaodong
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 179 : 199 - 207
  • [22] Comparative study on the transversal/lengthwise thermal failure propagation and heating position effect of lithium-ion batteries
    Weng, Jingwen
    Yang, Xiaoqing
    Ouyang, Dongxu
    Chen, Mingyi
    Zhang, Guoqing
    Wang, Jian
    APPLIED ENERGY, 2019, 255
  • [23] A study of expansion force propagation characteristics and early warning feasibility for the thermal diffusion process of lithium-ion battery modules
    Lin, Chunjing
    Mao, Jingbo
    Zhang, Xiaotao
    Yan, Tao
    Qi, Chuang
    Yang, Ju
    Feng, Xuning
    JOURNAL OF ENERGY STORAGE, 2024, 98
  • [24] Effects of the battery enclosure on the thermal behaviors of lithium-ion battery module during thermal runaway propagation by external-heating
    Li, Zijian
    Guo, Yinliang
    Zhang, Peihong
    JOURNAL OF ENERGY STORAGE, 2022, 48
  • [25] Comparison of different cooling techniques for a lithium-ion battery at various discharge rates using electrochemical thermal modeling
    Heidarshenas, Behzad
    Aghaei, Alireza
    Zamani, Amir Hossein
    Yuan, Yanjie
    APPLIED THERMAL ENGINEERING, 2025, 258
  • [26] Review of Thermal Management Strategies for Cylindrical Lithium-Ion Battery Packs
    Ahmadian-Elmi, Mohammad
    Zhao, Peng
    BATTERIES-BASEL, 2024, 10 (02):
  • [27] Dynamic thermophysical modeling of thermal runaway propagation and parametric sensitivity analysis for large format lithium-ion battery modules
    Wang, Huaibin
    Liu, Bo
    Xu, Chengshan
    Jin, Changyong
    Li, Kuijie
    Du, Zhiming
    Wang, Qinzheng
    Ouyang, Minggao
    Feng, Xuning
    JOURNAL OF POWER SOURCES, 2022, 520
  • [28] Dynamics of Intra-Cell Thermal Front Propagation in Lithium-Ion Battery Safety Issues
    Jia, Yikai
    Zhao, Peng
    Finegan, Donal P.
    Xu, Jun
    ADVANCED ENERGY MATERIALS, 2024, 14 (41)
  • [29] Study on Thermal Safety of the Overcharged Lithium-Ion Battery
    Ji, Changwei
    Zhang, Shouqin
    Wang, Bing
    Sun, Jiejie
    Zhang, Zhizu
    Liu, Yangyi
    FIRE TECHNOLOGY, 2023, 59 (03) : 1089 - 1114
  • [30] Thermal behavior and failure mechanism of large format lithium-ion battery
    Lu, Daban
    Lin, Shaoxiong
    Hu, Shuwan
    Cui, Wen
    Fang, Tingting
    Iqbal, Azhar
    Zhang, Zheng
    Peng, Wen
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2021, 25 (01) : 315 - 325