Thermal Failure Propagation in Lithium-Ion Battery Modules with Various Shapes

被引:38
|
作者
Ouyang, Dongxu [1 ]
Liu, Jiahao [2 ]
Chen, Mingyi [3 ]
Weng, Jingwen [4 ]
Wang, Jian [1 ]
机构
[1] Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230022, Anhui, Peoples R China
[2] Shanghai Maritime Univ, Coll Ocean Sci & Engn, Shanghai 201306, Peoples R China
[3] Jiangsu Univ, Sch Environm & Safety Engn, Zhenjiang 212013, Peoples R China
[4] Fuzhou Univ, Sch Environm & Resources, Fuzhou 350116, Fujian, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2018年 / 8卷 / 08期
基金
国家重点研发计划;
关键词
battery module; thermal failure propagation; discharging treatment; module shape; surface temperature; mass loss; PHASE-CHANGE MATERIAL; RUNAWAY PROPAGATION; MANAGEMENT-SYSTEM; PACK; HAZARDS; PERFORMANCE; COMPOSITE; CELLS;
D O I
10.3390/app8081263
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Thermal failure propagation is one of the most severe challenges for battery modules and it usually aggravates the thermal hazards, further resulting in serious accidents. This work conducted two groups of experiments to investigate the influence of discharging treatment and module shape on the thermal failure propagation of battery modules, where the triangle module, rectangle module, parallelogram module, line module, hexagon module, and square module were researched. Based on the results, it can be found that an evident domino effect existed on the thermal failure propagation of battery modules. Namely, the failure propagation process consisted of several phases and the number of phases depended on the shape of the module. Besides, it is indicated that discharging treatment on a battery module when it was in a high-temperature environment would aggravate its thermal failure propagation by bringing an earlier thermal failure, a quicker failure propagation, and a larger mass loss. Combining the results of safety and space utilization, it is revealed that the triangular module may be the best choice of battery module due to its smaller failure propagation speed and higher space utilization.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Experimental investigation of thermal failure propagation in typical lithium-ion battery modules
    Ouyang, Dongxu
    Weng, Jingwen
    Hu, Jianyao
    Chen, Mingyi
    Huang, Que
    Wang, Jian
    THERMOCHIMICA ACTA, 2019, 676 : 205 - 213
  • [2] Thermal Runaway Propagation Analytics and Crosstalk in Lithium-Ion Battery Modules
    Karmakar, Avijit
    Zhou, Hanwei
    Vishnugopi, Bairav S.
    Mukherjee, Partha P.
    ENERGY TECHNOLOGY, 2024, 12 (02)
  • [3] Experimental Analysis of Thermal Runaway and Propagation in Lithium-Ion Battery Modules
    Lopez, Carlos F.
    Jeevarajan, Judith A.
    Mukherjee, Partha P.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (09) : A1905 - A1915
  • [4] The effect of PCM on mitigating thermal runaway propagation in lithium-ion battery modules
    Luo, Weiyi
    Zhao, Luyao
    Chen, Mingyi
    APPLIED THERMAL ENGINEERING, 2024, 236
  • [5] An Experimental Study on the Thermal Failure Propagation in Lithium-Ion Battery Pack
    Ouyang, Dongxu
    Liu, Jiahao
    Chen, Mingyi
    Weng, Jingwen
    Wang, Jian
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (10) : A2184 - A2193
  • [6] Assessment of Thermal Runaway propagation in lithium-ion battery modules with different separator materials
    da Silva, Gabriel Menezes
    Lima, Thiago Jose
    da Silva, Dayvis Dias
    Henriques, Izabela Batista
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2024, 197
  • [7] An Experimental Study on the Thermal Runaway Propagation of Cycling Aged Lithium-Ion Battery Modules
    Han, Zhuxin
    Zhao, Luyao
    Zhao, Jiajun
    Xu, Guo
    Liu, Hong
    Chen, Mingyi
    FIRE-SWITZERLAND, 2024, 7 (04):
  • [8] Thermal and Electrochemical Analysis of Thermal Runaway Propagation of Samsung Cylindrical Cells in Lithium-ion Battery Modules
    Belt, Jeffrey
    Sorensen, Alexander
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (01)
  • [9] Analyzing Thermal Runaway Propagation in Lithium-Ion Battery Modules with Reduced Flammability Electrolyte Cells
    Sorensen, Alexander
    Belt, Jeffrey
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (08)
  • [10] Experimental Investigation of the Thermal Runaway Propagation Characteristics and Thermal Failure Prediction Parameters of Six-Cell Lithium-Ion Battery Modules
    Li, Hongxu
    Gao, Qing
    Wang, Yan
    ENERGIES, 2023, 16 (13)