Thermal Failure Propagation in Lithium-Ion Battery Modules with Various Shapes

被引:39
作者
Ouyang, Dongxu [1 ]
Liu, Jiahao [2 ]
Chen, Mingyi [3 ]
Weng, Jingwen [4 ]
Wang, Jian [1 ]
机构
[1] Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230022, Anhui, Peoples R China
[2] Shanghai Maritime Univ, Coll Ocean Sci & Engn, Shanghai 201306, Peoples R China
[3] Jiangsu Univ, Sch Environm & Safety Engn, Zhenjiang 212013, Peoples R China
[4] Fuzhou Univ, Sch Environm & Resources, Fuzhou 350116, Fujian, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2018年 / 8卷 / 08期
基金
国家重点研发计划;
关键词
battery module; thermal failure propagation; discharging treatment; module shape; surface temperature; mass loss; PHASE-CHANGE MATERIAL; RUNAWAY PROPAGATION; MANAGEMENT-SYSTEM; PACK; HAZARDS; PERFORMANCE; COMPOSITE; CELLS;
D O I
10.3390/app8081263
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Thermal failure propagation is one of the most severe challenges for battery modules and it usually aggravates the thermal hazards, further resulting in serious accidents. This work conducted two groups of experiments to investigate the influence of discharging treatment and module shape on the thermal failure propagation of battery modules, where the triangle module, rectangle module, parallelogram module, line module, hexagon module, and square module were researched. Based on the results, it can be found that an evident domino effect existed on the thermal failure propagation of battery modules. Namely, the failure propagation process consisted of several phases and the number of phases depended on the shape of the module. Besides, it is indicated that discharging treatment on a battery module when it was in a high-temperature environment would aggravate its thermal failure propagation by bringing an earlier thermal failure, a quicker failure propagation, and a larger mass loss. Combining the results of safety and space utilization, it is revealed that the triangular module may be the best choice of battery module due to its smaller failure propagation speed and higher space utilization.
引用
收藏
页数:21
相关论文
共 29 条
[1]   Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles [J].
Al-Zareer, Maan ;
Dincer, Ibrahim ;
Rosen, Marc A. .
JOURNAL OF POWER SOURCES, 2017, 363 :291-303
[2]   Thermal management of a LiFePO4 battery pack at high temperature environment using a composite of phase change materials and aluminum wire mesh plates [J].
Azizi, Y. ;
Sadrameli, S. M. .
ENERGY CONVERSION AND MANAGEMENT, 2016, 128 :294-302
[3]   Failure mechanism of Li-ion battery at overcharge conditions [J].
Belov, D. ;
Yang, Mo-Hua .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2008, 12 (7-8) :885-894
[4]   Study of the fire hazards of lithium-ion batteries at different pressures [J].
Chen, Mingyi ;
Liu, Jiahao ;
He, Yaping ;
Yuen, Richard ;
Wang, Jian .
APPLIED THERMAL ENGINEERING, 2017, 125 :1061-1074
[5]   Investigation on the thermal hazards of 18650 lithium ion batteries by fire calorimeter [J].
Chen, Mingyi ;
Zhou, Dechuang ;
Chen, Xiao ;
Zhang, Wenxia ;
Liu, Jiahao ;
Yuen, Richard ;
Wang, Jian .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2015, 122 (02) :755-763
[6]   Numerical analysis of heat propagation in a battery pack using a novel technology for triggering thermal runaway [J].
Coman, Paul T. ;
Darcy, Eric C. ;
Veje, Christian T. ;
White, Ralph E. .
APPLIED ENERGY, 2017, 203 :189-200
[7]   A General Discussion of Li Ion Battery Safety [J].
Doughty, Dan ;
Roth, E. Peter .
ELECTROCHEMICAL SOCIETY INTERFACE, 2012, 21 (02) :37-44
[8]   A 3D thermal runaway propagation model for a large format lithium ion battery module [J].
Feng, Xuning ;
Lu, Languang ;
Ouyang, Minggao ;
Li, Jiangqiu ;
He, Xiangming .
ENERGY, 2016, 115 :194-208
[9]   Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module [J].
Feng, Xuning ;
Sun, Jing ;
Ouyang, Minggao ;
Wang, Fang ;
He, Xiangming ;
Lu, Languang ;
Peng, Huei .
JOURNAL OF POWER SOURCES, 2015, 275 :261-273
[10]  
Hinkkanen S., 2018, THESIS