Analysis of QTLs for the Trichome Density on the Upper and Downer Surface of Leaf Blade in Soybean [Glycine max (L.) Merr.]

被引:15
|
作者
Du Wei-jun [1 ,2 ]
Yu De-yue [1 ]
Fu San-xiong [1 ]
机构
[1] Nanjing Agr Univ, Natl Ctr Soybean Improvement, Natl Key Lab Crop Genet & Germplasm Enhancement, Nanjing 210095, Peoples R China
[2] Shanxi Agr Univ, Coll Agron, Taigu 030801, Peoples R China
来源
AGRICULTURAL SCIENCES IN CHINA | 2009年 / 8卷 / 05期
基金
中国国家自然科学基金;
关键词
soybean [Glycine max (L.) Merr.; TDU; TDD; RI Ls; QTL analysis; WATER-USE EFFICIENCY; GENETIC-LINKAGE MAP; RESISTANCE; YIELD;
D O I
10.1016/S1671-2927(08)60243-6
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Trichomes (plant hairs) are present on nearly all land plants and are known to play important roles in plant protection, specifically against insect herbivory, drought, and UV radiation. The identification of quantitative trait loci (QTL) associated with trichome density should help to interpret the molecular genetic mechanism of soybean trichome density. 184 recombinant inbred lines (RILs), derived from a cross between soybean cultivars Kefeng 1 and Nannong 1138-2 were used as segregating population for evaluation of TDU (trichome density on the upper surface of leaf blade) and TDD (trichome density on the downer surface of leaf blade). A total of 15 QTL were detected on molecular linkage groups (MLG) A2, D1a, D1b, E and H by composite interval mapping (CIM) and among all the QTL, qtuA2-1, qtuD1a-1, qtuD1b-2, qtuH-2 qtuE-1, qtdD1b-2, and qtdH-2 were affirmed by multiple interval mapping (MIM). The contribution of phenotypic variance of qtuH-2 was 31.81 and 29.4% by CIM and MIM, respectively, suggesting it might be major gene Ps loci. Only 10 pairs of main QTL interactions for TDU were detected, explained a range of 0.2-5.1% of phenotypic variations for each pair for a total of 22.8%. The QTL on MLG D1b affecting trichome density were mapped near to Rsc-7 conditioning resistance to SMV (soybean mosaic virus). This study showed that the genetic mechanism of trichome density was the mixed major gene and polygene inheritance, and also suggested that the causal nature between trichome density and other agronomic traits.
引用
收藏
页码:529 / 537
页数:9
相关论文
共 50 条
  • [11] Influence of water deficit on leaf cuticular waxes of soybean (Glycine max [L.] Merr.)
    Kim, Kwan Su
    Park, Si Hyung
    Kim, Dong Kwan
    Jenks, Matthew A.
    INTERNATIONAL JOURNAL OF PLANT SCIENCES, 2007, 168 (03) : 307 - 316
  • [12] Variability of Leaf Morphology and Stomatal Conductance in Soybean [Glycine max (L.) Merr.] Cultivars
    Tanaka, Y.
    Fujii, K.
    Shiraiwa, T.
    CROP SCIENCE, 2010, 50 (06) : 2525 - 2532
  • [13] Photoperiod sensing of leaf regulates pod setting in soybean (Glycine max (L.) Merr.)
    Taniguchi, Takatoshi
    Murayama, Naoki
    Ario, Nobuyuki
    Nakagawa, Andressa C. S.
    Tanaka, Seiya
    Tomoita, Yuki
    Hasegawa, Mitsuo
    Hamaoka, Norimitsu
    Iwaya-Inoue, Mari
    Ishibashi, Yushi
    PLANT PRODUCTION SCIENCE, 2020, 23 (03) : 360 - 365
  • [14] Soybean (Glycine max (L.) Merr.):: utilization, genetics, biotechnology
    Zeller, FJ
    BODENKULTUR, 1999, 50 (03): : 191 - 202
  • [15] Androgenesis in soybean (Glycine max (L.) Merr.): a critical revisit
    Ramlal, Ayyagari
    Mehta, Sahil
    Nautiyal, Aparna
    Baweja, Pooja
    Shivam
    Sharma, Deepshikha
    Lal, S. K.
    Vijayan, Roshni
    Raju, Dhandapani
    Subramaniam, Sreeramanan
    Rajendran, Ambika
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-PLANT, 2024, 60 (01) : 1 - 15
  • [16] SSR diversity of vegetable soybean [Glycine max (L.) merr.]
    Mimura, Makiko
    Coyne, Clarice J.
    Bambuck, Marie W.
    Lumpkin, Thomas A.
    GENETIC RESOURCES AND CROP EVOLUTION, 2007, 54 (03) : 497 - 508
  • [17] Soybean (Glycine max L. Merr.) seedlings response to shading: leaf structure, photosynthesis and proteomic analysis
    Fan, Yuanfang
    Chen, Junxu
    Wang, Zhonglin
    Tan, Tingting
    Li, Shenglan
    Li, Jiafeng
    Wang, Beibei
    Zhang, Jiawei
    Cheng, Yajiao
    Wu, Xiaoling
    Yang, Wenyu
    Yang, Feng
    BMC PLANT BIOLOGY, 2019, 19 (1)
  • [18] SSR Diversity of Vegetable Soybean [Glycine max (L.) Merr.]
    Makiko Mimura
    Clarice J. Coyne
    Marie W. Bambuck
    Thomas A. Lumpkin
    Genetic Resources and Crop Evolution, 2007, 54 : 497 - 508
  • [19] Soybean (Glycine max (L.) Merr.) cultivar tolerance to sulfentrazone
    Hulting, AG
    Wax, LM
    Nelson, RL
    Simmons, FW
    CROP PROTECTION, 2001, 20 (08) : 679 - 683
  • [20] Uranium effects on the growth of soybean (Glycine max (L.) Merr.)
    Murthy, T.C.S.
    Weinberger, P.
    Measures, M.P.
    1600, (32):