SARIMA and Artificial Neural Network Models for Forecasting Electricity Consumption of a Microgrid Based Educational Building

被引:0
作者
Wasesa, M. [1 ]
Tiara, A. R. [1 ]
Afrianto, M. A. [1 ]
Ramadhan, F., I [1 ]
Haq, I. N. [2 ]
Pradipta, J. [2 ]
机构
[1] Inst Teknol Bandung, Sch Business & Management, Bandung, Indonesia
[2] Inst Teknol Bandung, Engn Phys Dept, Bandung, Indonesia
来源
2020 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEE IEEM) | 2020年
关键词
Microgrid; Electricity Consumption; SARIMA; ANN; Predictive Analytics;
D O I
10.1109/ieem45057.2020.9309943
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We develop Seasonal Autoregressive Integrated Moving Average (SARIMA) and Artificial Neural Network (ANN) models for predicting one-month and oneday ahead electricity consumption of a microgrid based educational building. The prediction models can provide forecasts up to hourly accuracy. For this objective, we use more than two million records of electricity consumption data imported from the smart meter system of a six-floor microgrid based educational building. We use the HyndmanKhandakar stepwise algorithm, which generates the (1, 0, 1)x(0, 1, 1)24 SARIMA prediction models. For the ANN prediction models, we use a thirty one-neurons input layer, a twenty-neurons hidden layer, and a single neuron output layer. The experiment results indicate that the ANN models produce more accurate and consistent predictions than the SARIMA models both in the one-month ahead and one-day ahead prediction contexts.
引用
收藏
页码:210 / 214
页数:5
相关论文
共 21 条
  • [1] Abdoulaye C AMARA., 2016, International Journal of Business and Management, V11, P231, DOI DOI 10.5539/IJBM.V11N5P231
  • [2] Short-term office building elevator energy consumption forecast using SARIMA
    Blazquez-Garcia, Ane
    Conde, Angel
    Milo, Aitor
    Sanchez, Roberto
    Barrio, Irantzu
    [J]. JOURNAL OF BUILDING PERFORMANCE SIMULATION, 2020, 13 (01) : 69 - 78
  • [3] The Smart Grid-State-of-the-art and Future Trends
    El-Hawary, Mohamed E.
    [J]. ELECTRIC POWER COMPONENTS AND SYSTEMS, 2014, 42 (3-4) : 239 - 250
  • [4] The Path of the Smart Grid
    Farhangi, Hassan
    [J]. IEEE POWER & ENERGY MAGAZINE, 2010, 8 (01): : 18 - 28
  • [5] Global fire season severity analysis and forecasting
    Ferreira, Leonardo N.
    Vega-Oliveros, Didier A.
    Zhao, Liang
    Cardoso, Manoel F.
    Macau, Elbert E. N.
    [J]. COMPUTERS & GEOSCIENCES, 2020, 134
  • [6] International comparison of energy efficiency of fossil power generation
    Graus, W. H. J.
    Voogt, M.
    Worrell, E.
    [J]. ENERGY POLICY, 2007, 35 (07) : 3936 - 3951
  • [7] Energy-Efficient Buildings Facilitated by Microgrid
    Guan, Xiaohong
    Xu, Zhanbo
    Jia, Qing-Shan
    [J]. IEEE TRANSACTIONS ON SMART GRID, 2010, 1 (03) : 243 - 252
  • [8] Hybrid energy storage system for microgrids applications: A review
    Hajiaghasi, Salman
    Salemnia, Ahmad
    Hamzeh, Mohsen
    [J]. JOURNAL OF ENERGY STORAGE, 2019, 21 : 543 - 570
  • [9] Hossain E., 2016, INT J RENEW ENERGY R
  • [10] Forecasting Electricity Demand in Thailand with an Artificial Neural Network Approach
    Kandananond, Karin
    [J]. ENERGIES, 2011, 4 (08): : 1246 - 1257