共 51 条
GENERALIZED PRECONDITIONED LOCALLY HARMONIC RESIDUAL METHOD FOR NON-HERMITIAN EIGENPROBLEMS
被引:15
作者:
Vecharynski, Eugene
[1
]
Yang, Chao
[1
]
Xue, Fei
[2
]
机构:
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
[2] Univ Louisiana Lafayette, Dept Math, Lafayette, LA 70504 USA
基金:
美国国家科学基金会;
关键词:
eigenvalue;
eigenvector;
non-Hermitian;
preconditioned eigensolver;
COMPUTING EIGENVALUES;
DAVIDSON METHOD;
ARNOLDI METHOD;
ALGORITHMS;
ITERATION;
D O I:
10.1137/15M1027413
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We introduce the generalized preconditioned locally harmonic residual (GPLHR) method for solving standard and generalized non-Hermitian eigenproblems. The method is particularly useful for computing a subset of eigenvalues, and their eigen-or Schur vectors, closest to a given shift. The proposed method is based on block iterations and can take advantage of a preconditioner if it is available. It does not need to perform exact shift-and-invert transformation. Standard and generalized eigenproblems are handled in a unified framework. Our numerical experiments demonstrate that GPLHR is generally more robust and efficient than existing methods, especially if the available memory is limited.
引用
收藏
页码:A500 / A527
页数:28
相关论文