GENERALIZED PRECONDITIONED LOCALLY HARMONIC RESIDUAL METHOD FOR NON-HERMITIAN EIGENPROBLEMS

被引:15
作者
Vecharynski, Eugene [1 ]
Yang, Chao [1 ]
Xue, Fei [2 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
[2] Univ Louisiana Lafayette, Dept Math, Lafayette, LA 70504 USA
基金
美国国家科学基金会;
关键词
eigenvalue; eigenvector; non-Hermitian; preconditioned eigensolver; COMPUTING EIGENVALUES; DAVIDSON METHOD; ARNOLDI METHOD; ALGORITHMS; ITERATION;
D O I
10.1137/15M1027413
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the generalized preconditioned locally harmonic residual (GPLHR) method for solving standard and generalized non-Hermitian eigenproblems. The method is particularly useful for computing a subset of eigenvalues, and their eigen-or Schur vectors, closest to a given shift. The proposed method is based on block iterations and can take advantage of a preconditioner if it is available. It does not need to perform exact shift-and-invert transformation. Standard and generalized eigenproblems are handled in a unified framework. Our numerical experiments demonstrate that GPLHR is generally more robust and efficient than existing methods, especially if the available memory is limited.
引用
收藏
页码:A500 / A527
页数:28
相关论文
共 51 条
[51]   New Algorithms for Iterative Matrix-Free Eigensolvers in Quantum Chemistry [J].
Zuev, Dmitry ;
Vecharynski, Eugene ;
Yang, Chao ;
Orms, Natalie ;
Krylov, Anna I. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2015, 36 (05) :273-284