GENERALIZED PRECONDITIONED LOCALLY HARMONIC RESIDUAL METHOD FOR NON-HERMITIAN EIGENPROBLEMS

被引:15
作者
Vecharynski, Eugene [1 ]
Yang, Chao [1 ]
Xue, Fei [2 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
[2] Univ Louisiana Lafayette, Dept Math, Lafayette, LA 70504 USA
基金
美国国家科学基金会;
关键词
eigenvalue; eigenvector; non-Hermitian; preconditioned eigensolver; COMPUTING EIGENVALUES; DAVIDSON METHOD; ARNOLDI METHOD; ALGORITHMS; ITERATION;
D O I
10.1137/15M1027413
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the generalized preconditioned locally harmonic residual (GPLHR) method for solving standard and generalized non-Hermitian eigenproblems. The method is particularly useful for computing a subset of eigenvalues, and their eigen-or Schur vectors, closest to a given shift. The proposed method is based on block iterations and can take advantage of a preconditioner if it is available. It does not need to perform exact shift-and-invert transformation. Standard and generalized eigenproblems are handled in a unified framework. Our numerical experiments demonstrate that GPLHR is generally more robust and efficient than existing methods, especially if the available memory is limited.
引用
收藏
页码:A500 / A527
页数:28
相关论文
共 51 条
[1]  
Aktulga H. M., 2014, P 28 IEEE INT PAR DI
[2]  
[Anonymous], 2011, CLASSICS APPL MATH
[3]  
[Anonymous], 2014, FINITE ELEMENTS FAST, DOI DOI 10.1093/ACPROF:OSO/9780199678792.003.0009
[4]  
[Anonymous], 2003, ITERATIVE METHODS SP, DOI DOI 10.1137/1.9780898718003
[5]  
Bai Z., 2000, Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. Ed. by, DOI DOI 10.1137/1.9780898719581
[6]   SPECTRAL PROPERTIES OF MANY-BODY SCHRODINGER OPERATORS WITH DILATATION-ANALYTIC INTERACTIONS [J].
BALSLEV, E ;
COMBES, JM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1971, 22 (04) :280-&
[7]  
Benzi M, 2005, ACTA NUMER, V14, P1, DOI 10.1017/S0962492904000212
[8]  
Cliffe K. A., 2000, Acta Numerica, V9, P39, DOI 10.1017/S0962492900000398
[9]   Algorithm 866: IFISS, a matlab toolbox for modelling incompressible flow [J].
Elman, Howard C. ;
Ramage, Alison ;
Silvester, David J. .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2007, 33 (02)
[10]   Jacobi-Davidson style QR and QZ algorithms for the reduction of matrix pencils [J].
Fokkema, DR ;
Sleijpen, GLG ;
Van der Vorst, HA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (01) :94-125