Orientability for gauge theories on Calabi-Yau manifolds

被引:29
作者
Cao, Yalong [1 ]
Leung, Naichung Conan
机构
[1] Chinese Univ Hong Kong, Inst Math Sci, Shatin, Hong Kong, Peoples R China
关键词
Orientability; Moduli spaces of sheaves; Calabi-Yau manifolds; Shifted symplectic structures; Gauge theory; Dirac operators; DONALDSON-THOMAS THEORY; GROMOV-WITTEN THEORY; MODULI SPACES; SHEAVES;
D O I
10.1016/j.aim.2017.04.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study orientability issues of moduli spaces from gauge theories on Calabi-Yau manifolds. Our results generalize and strengthen those for Donaldson Thomas theory on Calabi -Yau manifolds of dimensions 3 and 4. We also prove a corresponding result in the relative situation which is relevant to the gluing formula in DT theory. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:48 / 70
页数:23
相关论文
共 49 条
[1]  
Adams J.F., 1996, CHICAGO LECT MATH SE
[2]  
[Anonymous], 2008, ARXIV08112435
[3]  
Atiyah M., 1988, PUBL MATH-PARIS, V68, P175, DOI [DOI 10.1007/BF02698547, 10.1007/BF02698547]
[4]   THE YANG-MILLS EQUATIONS OVER RIEMANN SURFACES [J].
ATIYAH, MF ;
BOTT, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 308 (1505) :523-615
[5]   INDEX OF ELLIPTIC OPERATORS .4. [J].
ATIYAH, MF ;
SINGER, IM .
ANNALS OF MATHEMATICS, 1971, 93 (01) :119-&
[6]   Motivic degree zero Donaldson-Thomas invariants [J].
Behrend, Kai ;
Bryan, Jim ;
Szendroi, Balazs .
INVENTIONES MATHEMATICAE, 2013, 192 (01) :111-160
[7]   Donaldson-Thomas type invariants via microlocal geometry [J].
Behrend, Kai .
ANNALS OF MATHEMATICS, 2009, 170 (03) :1307-1338
[8]  
Borisov D., 2015, ARXIV150400690
[9]   POISSON STRUCTURES ON MODULI SPACES OF SHEAVES OVER POISSON SURFACES [J].
BOTTACIN, F .
INVENTIONES MATHEMATICAE, 1995, 121 (02) :421-436
[10]  
Brav C., 2013, ARXIV12113259V3