Orientability for gauge theories on Calabi-Yau manifolds

被引:28
作者
Cao, Yalong [1 ]
Leung, Naichung Conan
机构
[1] Chinese Univ Hong Kong, Inst Math Sci, Shatin, Hong Kong, Peoples R China
关键词
Orientability; Moduli spaces of sheaves; Calabi-Yau manifolds; Shifted symplectic structures; Gauge theory; Dirac operators; DONALDSON-THOMAS THEORY; GROMOV-WITTEN THEORY; MODULI SPACES; SHEAVES;
D O I
10.1016/j.aim.2017.04.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study orientability issues of moduli spaces from gauge theories on Calabi-Yau manifolds. Our results generalize and strengthen those for Donaldson Thomas theory on Calabi -Yau manifolds of dimensions 3 and 4. We also prove a corresponding result in the relative situation which is relevant to the gluing formula in DT theory. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:48 / 70
页数:23
相关论文
共 49 条
  • [1] Adams J.F., 1996, CHICAGO LECT MATH SE
  • [2] [Anonymous], 2008, ARXIV08112435
  • [3] Atiyah M., 1988, PUBL MATH-PARIS, V68, P175, DOI [DOI 10.1007/BF02698547, 10.1007/BF02698547]
  • [4] THE YANG-MILLS EQUATIONS OVER RIEMANN SURFACES
    ATIYAH, MF
    BOTT, R
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 308 (1505): : 523 - 615
  • [5] INDEX OF ELLIPTIC OPERATORS .4.
    ATIYAH, MF
    SINGER, IM
    [J]. ANNALS OF MATHEMATICS, 1971, 93 (01) : 119 - &
  • [6] Motivic degree zero Donaldson-Thomas invariants
    Behrend, Kai
    Bryan, Jim
    Szendroi, Balazs
    [J]. INVENTIONES MATHEMATICAE, 2013, 192 (01) : 111 - 160
  • [7] Donaldson-Thomas type invariants via microlocal geometry
    Behrend, Kai
    [J]. ANNALS OF MATHEMATICS, 2009, 170 (03) : 1307 - 1338
  • [8] Borisov D., 2015, ARXIV150400690
  • [9] POISSON STRUCTURES ON MODULI SPACES OF SHEAVES OVER POISSON SURFACES
    BOTTACIN, F
    [J]. INVENTIONES MATHEMATICAE, 1995, 121 (02) : 421 - 436
  • [10] Brav C., 2013, ARXIV12113259V3