An algorithm for sums of squares of real polynomials

被引:141
作者
Powers, V [1 ]
Wormann, T
机构
[1] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
[2] Univ Dortmund, Fak Math, Lehrstuhl 6, D-44221 Dortmund, Germany
关键词
D O I
10.1016/S0022-4049(97)83827-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an algorithm to determine if a real polynomial is a sum of squares (of polynomials), and to find an explicit representation if it is a sum of squares. This algorithm uses the fact that a sum of squares representation of a real polynomial corresponds to a real, symmetric, positive semi-definite matrix whose entries satisfy certain linear equations. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:99 / 104
页数:6
相关论文
共 6 条
[1]  
[Anonymous], 1987, Ergebnisse der Mathematik und ihrer Grenzgebiete
[2]   IMPROVED ALGORITHMS FOR SIGN DETERMINATION AND EXISTENTIAL QUANTIFIER ELIMINATION [J].
CANNY, J .
COMPUTER JOURNAL, 1993, 36 (05) :409-418
[3]  
Choi MD, 1977, Queen's Papers Pure Appl. Math., V46, P385
[4]  
Choi MD, 1995, Am. Math. Soc., V58, P103
[5]   SOLVING SYSTEMS OF POLYNOMIAL INEQUALITIES IN SUBEXPONENTIAL TIME [J].
GRIGOREV, DY ;
VOROBJOV, NN .
JOURNAL OF SYMBOLIC COMPUTATION, 1988, 5 (1-2) :37-64
[6]  
[No title captured]