An adjustable predictive score of graft survival in kidney transplant patients and the levels of risk linked to de novo donor-specific anti-HLA antibodies

被引:15
作者
Premaud, Aurelie [1 ,2 ]
Filloux, Matthieu [3 ,4 ]
Gatault, Philippe [5 ]
Thierry, Antoine [6 ]
Buchler, Matthias [5 ]
Munteanu, Eliza [7 ]
Marquet, Pierre [1 ,2 ,8 ]
Essig, Marie [1 ,2 ,7 ]
Rousseau, Annick [1 ,2 ]
机构
[1] INSERM, U850, Limoges, France
[2] Univ Limoges, UMR S850, Limoges, France
[3] CHU Limoges, Serv Immunol & Immunogenet, Limoges, France
[4] CNRS, CRIBL, UMR 7276, Limoges, France
[5] CHU Tours, Serv Nephrol & Immunol Clin, Tours, France
[6] CHU Poitiers, Serv Nephrol Hemodialyse Transplantat Renal, Poitiers, France
[7] CHU Limoges, Serv Nephrol, Dialyse Transplantat, Limoges, France
[8] CHU Limoges, Serv Pharmacol Toxicol & Pharmacovigilance, Limoges, France
关键词
RENAL-TRANSPLANTATION; SERUM CREATININE; ALLOGRAFT LOSS; FAILURE; REJECTION; OUTCOMES; FORESTS; SYSTEM; COHORT; TIME;
D O I
10.1371/journal.pone.0180236
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Most predictive models and scores of graft survival in renal transplantation include factors known before transplant or at the end of the first year. They cannot be updated thereafter, even in patients developing donor-specific anti-HLA antibodies and acute rejection. We developed a conditional and adjustable score for prediction of graft failure (AdGFS) up to 10 years post-transplantation in 664 kidney transplant patients. AdGFS was externally validated and calibrated in 896 kidney transplant patients. The final model included five baseline factors (pretransplant non donor-specific anti-HLA antibodies, donor age, serum creatinine measured at 1 year, longitudinal serum creatinine clusters during the first year, proteinuria measured at 1 year), and two predictors updated over time (de novo donor-specific anti-HLA antibodies and first acute rejection). AdGFS was able to stratify patients into four riskgroups, at different post-transplantation times. It showed good discrimination (time-dependent ROC curve at ten years: 0.83 (CI95% 0.76-0.89).
引用
收藏
页数:16
相关论文
共 37 条
[1]   Long term outcomes of transplantation using kidneys from expanded criteria donors: prospective, population based cohort study [J].
Aubert, Olivier ;
Kamar, Nassim ;
Vernerey, Dewi ;
Viglietti, Denis ;
Martinez, Frank ;
Duong-Van-Huyen, Jean-Paul ;
Eladari, Dominique ;
Empana, Jean-Philippe ;
Rabant, Marion ;
Verine, Jerome ;
Rostaing, Lionel ;
Congy, Nicolas ;
Guilbeau-Frugier, Celine ;
Mourad, Georges ;
Garrigue, Valerie ;
Morelon, Emmanuel ;
Giral, Magali ;
Kessler, Michele ;
Ladriere, Marc ;
Delahousse, Michel ;
Glotz, Denis ;
Legendre, Christophe ;
Jouven, Xavier ;
Lefaucheur, Carmen ;
Loupy, Alexandre .
BMJ-BRITISH MEDICAL JOURNAL, 2015, 351
[2]   Bayesian Modeling of Pretransplant Variables Accurately Predicts Kidney Graft Survival [J].
Brown, Trevor S. ;
Elster, Eric A. ;
Stevens, Kristin ;
Graybill, J. Christopher ;
Gillern, Suzanne ;
Phinney, Samuel ;
Salifu, Moro O. ;
Jindal, Rahul M. .
AMERICAN JOURNAL OF NEPHROLOGY, 2012, 36 (06) :561-569
[3]  
Calinski T., 1974, Commun StatTheory Methods, V3, P1, DOI DOI 10.1080/03610927408827101
[4]   Inferior Kidney Allograft Outcomes in Patients With De Novo Donor-Specific Antibodies Are Due to Acute Rejection Episodes [J].
Cooper, James E. ;
Gralla, Jane ;
Cagle, Linda ;
Goldberg, Ryan ;
Chan, Laurence ;
Wiseman, Alexander C. .
TRANSPLANTATION, 2011, 91 (10) :1103-1109
[5]  
DAGOSTINO RB, 2004, HDB STAT, P1
[6]   NOVEL HEAD AND NECK CANCER SURVIVAL ANALYSIS APPROACH: RANDOM SURVIVAL FORESTS VERSUS COX PROPORTIONAL HAZARDS REGRESSION [J].
Datema, Frank R. ;
Moya, Ana ;
Krause, Peter ;
Baeck, Thomas ;
Willmes, Lars ;
Langeveld, Ton ;
de Jong, Robert J. Baatenburg ;
Blom, Henk M. .
HEAD AND NECK-JOURNAL FOR THE SCIENCES AND SPECIALTIES OF THE HEAD AND NECK, 2012, 34 (01) :50-58
[7]   Each additional hour of cold ischemia time significantly increases the risk of graft failure and mortality following renal transplantation [J].
Debout, Agnes ;
Foucher, Yohann ;
Trebern-Launay, Katy ;
Legendre, Christophe ;
Kreis, Henri ;
Mourad, Georges ;
Garrigue, Valerie ;
Morelon, Emmanuel ;
Buron, Fanny ;
Rostaing, Lionel ;
Kamar, Nassim ;
Kessler, Michele ;
Ladriere, Marc ;
Poignas, Alexandra ;
Blidi, Amina ;
Soulillou, Jean-Paul ;
Giral, Magali ;
Dantan, Etienne .
KIDNEY INTERNATIONAL, 2015, 87 (02) :343-349
[8]   Random Survival Forest in practice: a method for modelling complex metabolomics data in time to event analysis [J].
Dietrich, Stefan ;
Floegel, Anna ;
Troll, Martina ;
Kuehn, Tilman ;
Rathmann, Wolfgang ;
Peters, Anette ;
Sookthai, Disorn ;
von Bergen, Martin ;
Kaaks, Rudolf ;
Adamski, Jerzy ;
Prehn, Cornelia ;
Boeing, Heiner ;
Schulze, Matthias B. ;
Illig, Thomas ;
Pischon, Tobias ;
Knueppel, Sven ;
Wang-Sattler, Rui ;
Drogan, Dagmar .
INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2016, 45 (05) :1406-1420
[9]   Incidence and Impact of De Novo Donor-Specific Alloantibody in Primary Renal Allografts [J].
Everly, Matthew J. ;
Rebellato, Lorita M. ;
Haisch, Carl E. ;
Ozawa, Miyuki ;
Parker, Karen ;
Briley, Kimberly P. ;
Catrou, Paul G. ;
Bolin, Paul ;
Kendrick, William T. ;
Kendrick, Scott A. ;
Harland, Robert C. ;
Terasaki, Paul I. .
TRANSPLANTATION, 2013, 95 (03) :410-417
[10]   Renal function as a predictor of long-term graft survival in renal transplant patients [J].
First, MR .
NEPHROLOGY DIALYSIS TRANSPLANTATION, 2003, 18 :3-6