Gold nanoparticle ink suitable for electric-conductive pattern fabrication using in ink-jet printing technology

被引:103
作者
Cui, Wenjuan [1 ]
Lu, Wensheng [1 ]
Zhang, Yakun [1 ]
Lin, Guanhua [1 ]
Wei, Tianxin [2 ]
Jiang, Long [1 ]
机构
[1] Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci, Beijing 100190, Peoples R China
[2] Beijing Inst Technol, Inst Chem Phys, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Gold nanoparticle; Ink-jet; Viscosity; Pattern; Microfabrication; Conductivity; MICROSTRUCTURES; FILMS; WATER;
D O I
10.1016/j.colsurfa.2010.01.023
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper we presented a novel water-based nanoparticle printing ink which can easily be used in producing electric-conductive patterns for the microfabrication and microelectronic devices by commercial printers. The well-dispersed nanoparticle ink was composed of metallic colloids which had a gold core less than 5 nm in diameter and were protected by two overlapped layers of polymers, poly(N-vinylpyrrolidone) (PVP) and acrylic resin (AR). The double layer protected gold nanoparticle (AuNP) ink was stable against aggregation for more than 1 year even at gold concentration higher than 20%. Viscosity of as-prepared ink was similar to the commercial inks which could be used in producing continuous and smooth lines 10 mu m in width and could be printed on various substrates. It has been found that the obtained gold patterns after sintered at 500 degrees C for 3 h would convert to electrical conductive ones. The density of metallic particles as well as the conductivity of patterns can be controlled by mediating the number of printing layers and the conditions of sintering process. A 50-layer printed line obtained in our experiment showed apparent conductivity of 8.0 x 10(4) S cm(-1) which was near to the conductivity value of the bulk gold metal. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:35 / 41
页数:7
相关论文
共 33 条
[1]   Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes [J].
Ahn, Bok Y. ;
Duoss, Eric B. ;
Motala, Michael J. ;
Guo, Xiaoying ;
Park, Sang-Il ;
Xiong, Yujie ;
Yoon, Jongseung ;
Nuzzo, Ralph G. ;
Rogers, John A. ;
Lewis, Jennifer A. .
SCIENCE, 2009, 323 (5921) :1590-1593
[2]   Electrical sintering of nanoparticle structures [J].
Allen, Mark L. ;
Aronniemi, Mikko ;
Mattila, Tomi ;
Alastalo, Ari ;
Ojanpera, Kimmo ;
Suhonen, Mika ;
Seppa, Heikki .
NANOTECHNOLOGY, 2008, 19 (17)
[3]  
Bailey RC, 2000, ADV MATER, V12, P1930, DOI 10.1002/1521-4095(200012)12:24<1930::AID-ADMA1930>3.0.CO
[4]  
2-F
[5]   Ink-jet fabrication of electronic components [J].
Bidoki, S. M. ;
Lewis, D. M. ;
Clark, M. ;
Vakorov, A. ;
Millner, P. A. ;
McGorman, D. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2007, 17 (05) :967-974
[6]   Fountain-pen-based laser microstructuring with gold nanoparticle inks [J].
Choi, TY ;
Poulikakos, D ;
Grigoropoulos, CP .
APPLIED PHYSICS LETTERS, 2004, 85 (01) :13-15
[7]   In-tandem deposition and sintering of printed gold nanoparticle inks induced by continuous Gaussian laser irradiation [J].
Chung, J ;
Bieri, NR ;
Ko, S ;
Grigoropoulos, CP ;
Poulikakos, D .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2004, 79 (4-6) :1259-1261
[8]   Conductor microstructures by laser curing of printed gold nanoparticle ink [J].
Chung, JW ;
Ko, SW ;
Bieri, NR ;
Grigoropoulos, CP ;
Poulikakos, D .
APPLIED PHYSICS LETTERS, 2004, 84 (05) :801-803
[9]   Rapid and Controllable Sintering of Gold Nanoparticle Inks at Room Temperature Using a Chemical Agent [J].
Coutts, Michael J. ;
Cortie, Michael B. ;
Ford, Michael J. ;
McDonagh, Andrew M. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (04) :1325-1328
[10]   A dry process for production of microfluidic devices based on the lamination of laser-printed polyester films [J].
do Lago, CL ;
da Silva, HDT ;
Neves, CA ;
Brito-Neto, JGA ;
da Silva, JAF .
ANALYTICAL CHEMISTRY, 2003, 75 (15) :3853-3858