H-Infinity Optimal Control for Systems With a Bottleneck Frequency

被引:13
作者
Bergeling, Carolina [1 ,2 ]
Pates, Richard [1 ,2 ]
Rantzer, Anders [1 ,2 ]
机构
[1] Lund Univ, Dept Automat Control, SE-22100 Lund, Sweden
[2] Lund Univ, ELLIIT Strateg Res Area, Lund, Sweden
基金
瑞典研究理事会;
关键词
Optimal control; Frequency control; Sparse matrices; Large-scale systems; Frequency synthesizers; Buildings; Distributed control; H-infinity control; linear systems; network analysis and control; optimal control; DISTRIBUTED CONTROL; DESIGN;
D O I
10.1109/TAC.2020.3010263
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We characterize a class of systems for which the H-infinity optimal control problem can be simplified in a way that enables sparse solutions and efficient computation. For a subclass of the systems, an optimal controller can be explicitly expressed in terms of the matrices of the system's state-space representation. In many applications, the controller given by this formula, which is static, can be implemented in a decentralized or distributed fashion. Examples are temperature dynamics in buildings, water irrigation, and electrical networks.
引用
收藏
页码:2732 / 2738
页数:7
相关论文
共 36 条
  • [1] Passivity as a design tool for group coordination
    Arcak, Murat
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (08) : 1380 - 1390
  • [2] Decentralized control: An overview
    Bakule, Lubomir
    [J]. ANNUAL REVIEWS IN CONTROL, 2008, 32 (01) : 87 - 98
  • [3] Distributed control of spatially invariant systems
    Bamieh, B
    Paganini, F
    Dahleh, MA
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (07) : 1091 - 1107
  • [4] Bergeling C, 2019, THESIS LUND U LUND
  • [5] Closed-form H-infinity optimal control for a class of infinite-dimensional systems
    Bergeling, Carolina
    Morris, Kirsten A.
    Rantzer, Anders
    [J]. AUTOMATICA, 2020, 117
  • [6] Bernhard Pierre, 2008, H-Infinity Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach
  • [7] Robust stability and stabilization of uncertain linear positive systems via integral linear constraints: L1-gain and L∞-gain characterization
    Briat, Corentin
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2013, 23 (17) : 1932 - 1954
  • [8] Cantoni M., 2008, P 17 IFAC WORLD C SE, V41, P10033
  • [9] Control of large-scale irrigation networks
    Cantoni, Michael
    Weyer, Erik
    Li, Yuping
    Ooi, Su Ki
    Mareels, Iven
    Ryan, Matthew
    [J]. PROCEEDINGS OF THE IEEE, 2007, 95 (01) : 75 - 91
  • [10] Comments on "Distributed Control of Spatially Invariant Systems"
    Curtain, Ruth
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (03) : 707 - 710