Some solutions of the linear and nonlinear Klein-Gordon equations using the optimal homotopy asymptotic method

被引:73
作者
Iqbal, S. [2 ]
Idrees, M. [3 ]
Siddiqui, A. M. [4 ]
Ansari, A. R. [1 ]
机构
[1] Gulf Univ Sci & Technol, Dept Math & Nat Sci, Hawally 32093, Kuwait
[2] PINSTECH, Theoret Plasma Phys Div, Islamabad 44000, Pakistan
[3] Ghulam Ishaq Khan Inst Engn Sci & Technol, Fac Engn Sci, Topi 23460, Swabi, Pakistan
[4] Penn State Univ, Dept Math, York, PA 17403 USA
关键词
Optimal homotopy asymptotic method; Klein-Gordon equations; Partial differential equations; DECOMPOSITION METHOD; DIFFERENTIAL-EQUATIONS; PERTURBATION METHOD; FLOW; FLUID;
D O I
10.1016/j.amc.2010.04.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the effectiveness of the Optimal Homotopy Asymptotic Method (OHAM) in solving time dependent partial differential equations. To this effect we consider the homogeneous, non-homogeneous, linear and nonlinear Klein-Gordon equations with boundary conditions. The results reveal that the method is explicit, effective, and easy to use. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2898 / 2909
页数:12
相关论文
共 15 条
[1]   SINE-GORDON EQUATION AS A MODEL CLASSICAL FIELD-THEORY [J].
CAUDREY, PJ ;
EILBECK, JC ;
GIBBON, JD .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1975, B 25 (02) :497-512
[2]   A decomposition method for solving the nonlinear Klein-Gordon equation [J].
Deeba, EY ;
Khuri, SA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 124 (02) :442-448
[3]   The decomposition method for studying the Klein-Gordon equation [J].
El-Sayed, SM .
CHAOS SOLITONS & FRACTALS, 2003, 18 (05) :1025-1030
[4]   Solitary wave solutions for a generalized Hirota-Satsuma coupled KdV equation by homotopy perturbation method [J].
Ganji, D. D. ;
Rafei, M. .
PHYSICS LETTERS A, 2006, 356 (02) :131-137
[5]  
He J.H., 1998, COMMUN NONLINEAR SCI, V32, P92, DOI [DOI 10.1016/S1007-5704(98)90070-3, 10.1016/S1007-5704(98)90070-3]
[6]   Periodic solutions and bifurcations of delay-differential equations [J].
He, JH .
PHYSICS LETTERS A, 2005, 347 (4-6) :228-230
[7]  
Herisanu N, 2008, P ROMANIAN ACAD A, V9, P229
[8]  
Liao S.J., 1992, THESIS SHANGHAI JIO
[9]   Application of homotopy analysis method in nonlinear oscillations [J].
Liao, SJ ;
Chwang, AT .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1998, 65 (04) :914-922
[10]  
Marinca V, 2008, CENT EUR J PHYS, V6, P648, DOI [10.2478/s11534-008-0061-x, 10.2478/S11534-008-0061-x]