L2-asymptotic stability of singular solutions to the Navier-Stokes system of equations in R3

被引:18
作者
Karch, Grzegorz [1 ]
Pilarczyk, Dominika [1 ]
Schonbek, Maria E. [2 ]
机构
[1] Uniwersytet Wroclawski, Inst Matemat, Pl Grunwaldzki 2-4, PL-50384 Wroclaw, Poland
[2] Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2017年 / 108卷 / 01期
基金
美国国家科学基金会;
关键词
Navier-Stokes equations; Weak solutions; Asymptotic stability; Fourier splitting; SELF-SIMILAR SOLUTIONS; WEAK SOLUTIONS; LP-SOLUTIONS; L2; DECAY; MULTIPLIERS; UNIQUENESS; SPACES;
D O I
10.1016/j.matpur.2016.10.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider global-in-time small solutions of the initial value problem to the incompressible Navier-Stokes equations in R-3. Usually, such solutions do not belong to L-2(R-3) and may be singular if they correspond to singular external forces. However, we prove that we can still establish their asymptotic stability under arbitrarily large initial L-2-perturbations. (C) 2016 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:14 / 40
页数:27
相关论文
共 50 条
[21]   Self-similar solutions for Navier-Stokes equations in R(3) [J].
Cannone, M ;
Planchon, F .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1996, 21 (1-2) :179-193
[22]  
Cannone M., 1995, Ondelettes, paraproduits et NavierStokes
[23]   About Weak-Strong Uniqueness for the 3D Incompressible Navier-Stokes System [J].
Chemin, Jean-Yves .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (12) :1587-1598
[24]   Weak solutions for the Navier-Stokes equations with B∞∞-1(ln)+BXr-1+r,2/1-r+L2 initial data [J].
Cui, Shangbin .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (05)
[25]   Uniqueness for some Leray-Hopf solutions to the Navier-Stokes equations [J].
Dubois, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 189 (01) :99-147
[26]   THE UNCERTAINTY PRINCIPLE [J].
FEFFERMAN, CL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 9 (02) :129-206
[27]   ON THE NAVIER-STOKES INITIAL VALUE PROBLEM .1. [J].
FUJITA, H ;
KATO, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1964, 16 (04) :269-315
[28]   Multipliers, paramultipliers, and weak-strong uniqueness for the Navier-Stokes equations [J].
Germain, Pierre .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 226 (02) :373-428
[29]   NAVIER-STOKES FLOW IN R3 WITH MEASURES AS INITIAL VORTICITY AND MORREY SPACES [J].
GIGA, Y ;
MIYAKAWA, T .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1989, 14 (05) :577-618
[30]   A remark on the div-curl lemma [J].
Gilles Lemarie-Rieusset, Pierre .
STUDIA MATHEMATICA, 2012, 210 (01) :77-98