L2-asymptotic stability of singular solutions to the Navier-Stokes system of equations in R3

被引:18
作者
Karch, Grzegorz [1 ]
Pilarczyk, Dominika [1 ]
Schonbek, Maria E. [2 ]
机构
[1] Uniwersytet Wroclawski, Inst Matemat, Pl Grunwaldzki 2-4, PL-50384 Wroclaw, Poland
[2] Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2017年 / 108卷 / 01期
基金
美国国家科学基金会;
关键词
Navier-Stokes equations; Weak solutions; Asymptotic stability; Fourier splitting; SELF-SIMILAR SOLUTIONS; WEAK SOLUTIONS; LP-SOLUTIONS; L2; DECAY; MULTIPLIERS; UNIQUENESS; SPACES;
D O I
10.1016/j.matpur.2016.10.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider global-in-time small solutions of the initial value problem to the incompressible Navier-Stokes equations in R-3. Usually, such solutions do not belong to L-2(R-3) and may be singular if they correspond to singular external forces. However, we prove that we can still establish their asymptotic stability under arbitrarily large initial L-2-perturbations. (C) 2016 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:14 / 40
页数:27
相关论文
共 50 条
[1]  
[Anonymous], 2002, FUNKC EKVACIOJ-SER I
[2]  
[Anonymous], UCHEN ZAPISKI MOSKOV
[3]  
[Anonymous], 1982, NONLINEAR PARTIAL DI
[4]  
[Anonymous], 2002, CHAPMAN HALL CRC RES
[5]  
[Anonymous], 1959, Fluid Mechanics
[6]  
[Anonymous], 2009, ARXIV09014286MATHAP
[7]  
[Anonymous], ADV DIFFERENTIAL EQU
[8]  
[Anonymous], RES NOTES MATH
[9]  
[Anonymous], FUNKC EKVACIOJ
[10]  
[Anonymous], 1977, STUDIES MATH ITS APP