Engineering electronic properties of metal-MoSe2 interfaces using self-assembled monolayers

被引:25
作者
Cakir, Deniz [1 ]
Sevik, Cem [2 ]
Peeters, Francois M. [1 ]
机构
[1] Univ Antwerp, Dept Phys, B-2020 Antwerp, Belgium
[2] Anadolu Univ, Fac Engn, Dept Mech Engn, TR-26555 Eskisehir, Turkey
关键词
FIELD-EFFECT TRANSISTORS; METAL; TRANSPORT;
D O I
10.1039/c4tc01794c
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Metallic contacts are critical components of electronic devices and the presence of a large Schottky barrier is detrimental for an optimal device operation. Here, we show by using first-principles calculations that a self-assembled monolayer (SAM) of polar molecules between the metal electrode and MoSe2 monolayer is able to convert the Schottky contact into an almost Ohmic contact. We choose -CH3 and -CF3 terminated short-chain alkylthiolate (i.e. SCH3 and fluorinated alkylthiolates (SCF3)) based SAMs to test our approach. We consider both high (Au) and low (Sc) work function metals in order to thoroughly elucidate the role of the metal work function. In the case of Sc, the Fermi level even moves into the conduction band of the MoSe2 monolayer upon SAM insertion between the metal surface and the MoSe2 monolayer, and hence possibly switches the contact type from Schottky to Ohmic. The usual Fermi level pinning at the metal-transition metal dichalcogenide (TMD) contact is shown to be completely removed upon the deposition of a SAM. Systematic analysis indicates that the work function of the metal surface and the energy level alignment between the metal electrode and the TMD monolayer can be tuned significantly by using SAMs as a buffer layer. These results clearly indicate the vast potential of the proposed interface engineering to modify the physical and chemical properties of MoSe2.
引用
收藏
页码:9842 / 9849
页数:8
相关论文
共 51 条
[21]  
Heyd J, 2006, J CHEM PHYS, V124, DOI [10.1063/1.2204597, 10.1063/1.1564060]
[22]   Metal dichalcogenide nanosheets: preparation, properties and applications [J].
Huang, Xiao ;
Zeng, Zhiyuan ;
Zhang, Hua .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (05) :1934-1946
[23]  
Ishii H, 1999, ADV MATER, V11, P605, DOI 10.1002/(SICI)1521-4095(199906)11:8<605::AID-ADMA605>3.0.CO
[24]  
2-Q
[25]   Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides [J].
Jariwala, Deep ;
Sangwan, Vinod K. ;
Lauhon, Lincoln J. ;
Marks, Tobin J. ;
Hersam, Mark C. .
ACS NANO, 2014, 8 (02) :1102-1120
[26]   Electronic structure and electrical properties of interfaces between metals and π-conjugated molecular films [J].
Kahn, A ;
Koch, N ;
Gao, WY .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2003, 41 (21) :2529-2548
[27]   High-performance MoS2 transistors with low-resistance molybdenum contacts [J].
Kang, Jiahao ;
Liu, Wei ;
Banerjee, Kaustav .
APPLIED PHYSICS LETTERS, 2014, 104 (09)
[28]   First-principles study of the interaction and charge transfer between graphene and metals [J].
Khomyakov, P. A. ;
Giovannetti, G. ;
Rusu, P. C. ;
Brocks, G. ;
van den Brink, J. ;
Kelly, P. J. .
PHYSICAL REVIEW B, 2009, 79 (19)
[29]   Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J].
Kresse, G ;
Furthmuller, J .
PHYSICAL REVIEW B, 1996, 54 (16) :11169-11186
[30]   INTERACTION BETWEEN CLOSED-SHELL SYSTEMS AND METAL-SURFACES [J].
LANG, ND .
PHYSICAL REVIEW LETTERS, 1981, 46 (13) :842-845