A new model for evolution in a spatial continuum

被引:65
作者
Barton, N. H. [1 ]
Etheridge, A. M. [2 ]
Veber, A. [3 ]
机构
[1] IST Austria, A-3400 Klosterneuburg, Austria
[2] Univ Oxford, Dept Stat, Oxford OX1 3TG, England
[3] Univ Paris 11, Dept Math, F-91405 Orsay, France
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2010年 / 15卷
基金
英国工程与自然科学研究理事会;
关键词
genealogy; evolution; multiple merger coalescent; spatial continuum; spatial Lambda-coalescent; generalised Fleming-Viot process; STEPPING STONE MODEL; COALESCENT PROCESSES; POPULATION-MODELS; VOTER MODEL; DISTANCE; TORUS; FIELD;
D O I
10.1214/EJP.v15-741
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate a new model for populations evolving in a spatial continuum. This model can be thought of as a spatial version of the Lambda-Fleming-Viot process. It explicitly incorporates both small scale reproduction events and large scale extinction-recolonisation events. The lineages ancestral to a sample from a population evolving according to this model can be described in terms of a spatial version of the Lambda-coalescent. Using a technique of Evans (1997), we prove existence and uniqueness in law for the model. We then investigate the asymptotic behaviour of the genealogy of a finite number of individuals sampled uniformly at random (or more generally 'far enough apart') from a two-dimensional torus of sidelength L as L -> infinity. Under appropriate conditions (and on a suitable timescale) we can obtain as limiting genealogical processes a Kingman coalescent, a more general Lambda-coalescent or a system of coalescing Brownian motions (with a non-local coalescence mechanism)
引用
收藏
页码:162 / 216
页数:55
相关论文
共 34 条
[1]   Neutral evolution in spatially continuous populations [J].
Barton, NH ;
Depaulis, F ;
Etheridge, AM .
THEORETICAL POPULATION BIOLOGY, 2002, 61 (01) :31-48
[2]  
BARTON NH, 2009, NEW MODEL LARGE SCAL
[3]  
Berestycki N, 2009, MARKOV PROCESS RELAT, V15, P265
[4]   Stochastic flows associated to coalescent processes [J].
Bertoin, J ;
Le Gall, JF .
PROBABILITY THEORY AND RELATED FIELDS, 2003, 126 (02) :261-288
[5]  
Bertoin J., 1996, Levy Processes
[6]   REFINEMENTS OF MULTIDIMENSIONAL CENTRAL LIMIT-THEOREM AND APPLICATIONS [J].
BHATTACHARYA, RN .
ANNALS OF PROBABILITY, 1977, 5 (01) :1-27
[7]  
Billingsley P., 1995, Probability and Measure
[8]   Alpha-stable branching and beta-coalescents [J].
Birkner, M ;
Blath, J ;
Capaldo, M ;
Etheridge, A ;
Möhle, M ;
Schweinsberg, J ;
Wakolbinger, A .
ELECTRONIC JOURNAL OF PROBABILITY, 2005, 10 :303-325
[9]   DIFFUSIVE CLUSTERING IN THE 2-DIMENSIONAL VOTER MODEL [J].
COX, JT ;
GRIFFEATH, D .
ANNALS OF PROBABILITY, 1986, 14 (02) :347-370
[10]  
Cox JT, 2002, ANN APPL PROBAB, V12, P1348