Large-scale evidence generation and evaluation across a network of databases for type 2 diabetes mellitus (LEGEND-T2DM): a protocol for a series of multinational, real-world comparative cardiovascular effectiveness and safety studies

被引:10
作者
Khera, Rohan [1 ,2 ]
Schuemie, Martijn J. [3 ,4 ]
Lu, Yuan [1 ,2 ]
Ostropolets, Anna [5 ]
Chen, RuiJun [6 ]
Hripcsak, George [5 ,7 ]
Ryan, Patrick B. [3 ,5 ]
Krumholz, Harlan M. [1 ,2 ]
Suchard, Marc A. [4 ,8 ,9 ,10 ]
机构
[1] Yale Sch Med, Sect Cardiovasc Medine, New Haven, CT USA
[2] Yale Univ, Ctr Outcomes Res & Evaluat, Sch Med, New Haven, CT USA
[3] Janssen Res & Dev, Dept Epidemiol Analyt, Titusville, NJ USA
[4] Univ Calif Los Angeles, Dept Biostat, Los Angeles, CA 90095 USA
[5] Columbia Univ, Dept Biomed Informat, Med Ctr, New York, NY USA
[6] Geisinger, Dept Translat Data Sci & Informat, Danville, PA USA
[7] New York Presbyterian Hosp, New York, NY USA
[8] Univ Calif Los Angeles, Dept Biomath, Los Angeles, CA 90095 USA
[9] Univ Calif Los Angeles, Dept Human Genet, Los Angeles, CA 90095 USA
[10] US Dept Vet Affairs, VA Informat & Comp Infrastruct, Salt Lake City, UT 84113 USA
来源
BMJ OPEN | 2022年 / 12卷 / 06期
基金
美国国家卫生研究院;
关键词
Health informatics; DIABETES & ENDOCRINOLOGY; Cardiology; TRANSIENT ISCHEMIC ATTACK; ACUTE MYOCARDIAL-INFARCTION; ELECTRONIC HEALTH DATA; HEART-FAILURE; ADMINISTRATIVE DATA; ACUTE-PANCREATITIS; RECEPTOR AGONISTS; VALIDATED METHODS; SGLT2; INHIBITORS; PROPENSITY SCORE;
D O I
10.1136/bmjopen-2021-057977
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Introduction Therapeutic options for type 2 diabetes mellitus (T2DM) have expanded over the last decade with the emergence of cardioprotective novel agents, but without such data for older drugs, leaving a critical gap in our understanding of the relative effects of T2DM agents on cardiovascular risk. Methods and analysis The large-scale evidence generations across a network of databases for T2DM (LEGEND-T2DM) initiative is a series of systematic, large-scale, multinational, real-world comparative cardiovascular effectiveness and safety studies of all four major second-line anti-hyperglycaemic agents, including sodium-glucose co-transporter-2 inhibitor, glucagon-like peptide-1 receptor agonist, dipeptidyl peptidase-4 inhibitor and sulfonylureas. LEGEND-T2DM will leverage the Observational Health Data Sciences and Informatics (OHDSI) community that provides access to a global network of administrative claims and electronic health record data sources, representing 190 million patients in the USA and about 50 million internationally. LEGEND-T2DM will identify all adult, patients with T2DM who newly initiate a traditionally second-line T2DM agent. Using an active comparator, new-user cohort design, LEGEND-T2DM will execute all pairwise class-versus-class and drug-versus-drug comparisons in each data source, producing extensive study diagnostics that assess reliability and generalisability through cohort balance and equipoise to examine the relative risk of cardiovascular and safety outcomes. The primary cardiovascular outcomes include a composite of major adverse cardiovascular events and a series of safety outcomes. The study will pursue data-driven, large-scale propensity adjustment for measured confounding, a large set of negative control outcome experiments to address unmeasured and systematic bias. Ethics and dissemination The study ensures data safety through a federated analytic approach and follows research best practices, including prespecification and full disclosure of results. LEGEND-T2DM is dedicated to open science and transparency and will publicly share all analytic code from reproducible cohort definitions through turn-key software, enabling other research groups to leverage our methods, data and results to verify and extend our findings.
引用
收藏
页数:16
相关论文
共 123 条
  • [1] A LINEAR-REGRESSION MODEL FOR THE ANALYSIS OF LIFE TIMES
    AALEN, OO
    [J]. STATISTICS IN MEDICINE, 1989, 8 (08) : 907 - 925
  • [2] Risk of hyperkalemia and combined use of spironolactone and long-term ACE inhibitor/angiotensin receptor blocker therapy in heart failure using real-life data: a population- and insurance-based cohort
    Abbas, Sascha
    Ihle, Peter
    Harder, Sebastian
    Schubert, Ingrid
    [J]. PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2015, 24 (04) : 406 - 413
  • [3] Improving sensitivity of machine learning methods for automated case identification from free-text electronic medical records
    Afzal, Zubair
    Schuemie, Martijn J.
    van Blijderveen, Jan C.
    Sen, Elif F.
    Sturkenboom, Miriam C. J. M.
    Kors, Jan A.
    [J]. BMC MEDICAL INFORMATICS AND DECISION MAKING, 2013, 13
  • [6] Chart validation of inpatient ICD-9-CM administrative diagnosis codes for acute myocardial infarction (AMI) among intravenous immune globulin (IGIV) users in the Sentinel Distributed Database
    Ammann, Eric M.
    Schweizer, Marin L.
    Robinson, Jennifer G.
    Eschol, Jayasheel O.
    Kafa, Rami
    Girotra, Saket
    Winiecki, Scott K.
    Fuller, Candace C.
    Carnahan, Ryan M.
    Leonard, Charles E.
    Haskins, Cole
    Garcia, Crystal
    Chrischilles, Elizabeth A.
    [J]. PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2018, 27 (04) : 398 - 404
  • [7] Chart validation of inpatient International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) administrative diagnosis codes for venous thromboembolism (VTE) among intravenous immune globulin (IGIV) users in the Sentinel Distributed Database
    Ammann, Eric M.
    Cuker, Adam
    Carnahan, Ryan M.
    Perepu, Usha S.
    Winiecki, Scott K.
    Schweizer, Marin L.
    Leonard, Charles E.
    Fuller, Candace C.
    Garcia, Crystal
    Haskins, Cole
    Chrischilles, Elizabeth A.
    [J]. MEDICINE, 2018, 97 (08)
  • [8] A systematic review of validated methods for identifying cerebrovascular accident or transient ischemic attack using administrative data
    Andrade, Susan E.
    Harrold, Leslie R.
    Tjia, Jennifer
    Cutrona, Sarah L.
    Saczynski, Jane S.
    Dodd, Katherine S.
    Goldberg, Robert J.
    Gurwitz, Jerry H.
    [J]. PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2012, 21 : 100 - 128
  • [9] Incidence and impact on outcomes of acute kidney injury after a stroke: a systematic review and meta-analysis
    Arnold, Julia
    Ng, Khai Ping
    Sims, Don
    Gill, Paramjit
    Cockwell, Paul
    Ferro, Charles
    [J]. BMC NEPHROLOGY, 2018, 19
  • [10] Real-world use and modeled impact of glucose-lowering therapies evaluated in recent cardiovascular outcomes trials: An NCDR® Research to Practice project
    Arnold, Suzanne V.
    Inzucchi, Silvio E.
    Tang, Fengming
    McGuire, Darren K.
    Mehta, Sanjeev N.
    Maddox, Thomas M.
    Goyal, Abhinav
    Sperling, Laurence S.
    Einhorn, Daniel
    Wong, Nathan D.
    Khunti, Kamlesh
    Lam, Carolyn S. P.
    Kosiborod, Mikhail
    [J]. EUROPEAN JOURNAL OF PREVENTIVE CARDIOLOGY, 2017, 24 (15) : 1637 - 1645