Modeling Price Dynamics, Optimal Portfolios, and Option Valuation for Cryptoassets

被引:4
作者
Hu, Yuan [1 ]
Lindquist, W. Brent [2 ]
Fabozzi, Frank J. [3 ]
机构
[1] Texas Tech Univ, Dept Math & Stat, Lubbock, TX 79409 USA
[2] Texas Tech Univ, Math & Stat, Lubbock, TX 79409 USA
[3] EDHEC Business Sch, Finance, Nice, France
来源
JOURNAL OF ALTERNATIVE INVESTMENTS | 2021年 / 24卷 / 01期
关键词
RETURNS;
D O I
10.3905/jai.2021.1.133
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
The authors demonstrate the construction of an optimal dynamic portfolio of cryptoassets that minimizes either return variance or conditional value at risk. One can view such a portfolio as a minimum-risk index for this asset class. They carefully backtested the dynamic portfolio model and developed a fair valuation model for options based on a dynamic pricing model for the underlying cryptoasset index. They obtain the valuation by passing from the natural world to the equivalent martingale measure via the Esscher transform. The work underscores the need for a cryptoasset index-based exchange-traded fund, the development of derivatives, particularly for cryptoportfolio insurance purposes, and the development of (nearly) riskless rates for this asset class.
引用
收藏
页码:75 / 93
页数:19
相关论文
共 27 条
[1]  
[Anonymous], 2019, SSRN SCHOLARLY PAPER, DOI DOI 10.2139/SSRN.3332550
[2]   Coherent measures of risk [J].
Artzner, P ;
Delbaen, F ;
Eber, JM ;
Heath, D .
MATHEMATICAL FINANCE, 1999, 9 (03) :203-228
[3]   Can volume predict Bitcoin returns and volatility? A quantiles-based approach [J].
Balcilar, Mehmet ;
Bouri, Elie ;
Gupta, Rangan ;
Roubaud, David .
ECONOMIC MODELLING, 2017, 64 :74-81
[4]   On a new multivariate two-sample test [J].
Baringhaus, L ;
Franz, C .
JOURNAL OF MULTIVARIATE ANALYSIS, 2004, 88 (01) :190-206
[5]   EXPONENTIALLY DECREASING DISTRIBUTIONS FOR LOGARITHM OF PARTICLE-SIZE [J].
BARNDORFFNIELSEN, O .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1977, 353 (1674) :401-419
[6]   GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTICITY [J].
BOLLERSLEV, T .
JOURNAL OF ECONOMETRICS, 1986, 31 (03) :307-327
[7]  
Campbell J. Y., 1997, The econometrics of financial markets
[8]   Option pricing for GARCH-type models with generalized hyperbolic innovations [J].
Chorro, Christophe ;
Guegan, Dominique ;
Ielpo, Florian .
QUANTITATIVE FINANCE, 2012, 12 (07) :1079-1094
[9]  
Cornuejols G, 2007, MATH FINANC RISK, P1
[10]   The t copula and related copulas [J].
Demarta, S ;
McNeil, AJ .
INTERNATIONAL STATISTICAL REVIEW, 2005, 73 (01) :111-129