Subspaces intersecting in at most a point

被引:4
作者
Kurz, Sascha [1 ]
机构
[1] Univ Bayreuth, D-95440 Bayreuth, Germany
关键词
Constant dimension codes; Finite projective geometry; Network coding; CODES;
D O I
10.1007/s10623-019-00699-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We improve on the lower bound of the maximum number of planes in PG(8, q) congruent to F-q(9) pairwise intersecting in at most a point. In terms of constant dimension codes this leads to A(q) (9, 4; 3) >= q(12) + 2q(8) + 2q(7) + q(6) + 2q(5) + 2q(4) - 2q(2) - 2q + 1. This result is obtained via a more general construction strategy, which also yields other improvements.
引用
收藏
页码:595 / 599
页数:5
相关论文
共 13 条
[1]  
[Anonymous], ARXIV160101502
[2]  
Cossidente A., 2019, ARXIV190511021
[3]   On subspace codes [J].
Cossidente, Antonio ;
Pavese, Francesco .
DESIGNS CODES AND CRYPTOGRAPHY, 2016, 78 (02) :527-531
[5]   Codes and Designs Related to Lifted MRD Codes [J].
Etzion, Tuvi ;
Silberstein, Natalia .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (02) :1004-1017
[6]   Classifying optimal binary subspace codes of length 8, constant dimension 4 and minimum distance 6 [J].
Heinlein, Daniel ;
Honold, Thomas ;
Kiermaier, Michael ;
Kurz, Sascha ;
Wassermann, Alfred .
DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (2-3) :375-391
[7]  
Honold T., 2016, DYNAMICAL SYSTEMS NU, P141
[8]  
Honold T, 2018, SIGNALS COMMUN TECHN, P131, DOI 10.1007/978-3-319-70293-3_7
[9]   Optimal binary subspace codes of length 6, constant dimension 3 and minimum subspace distance 4 [J].
Honold, Thomas ;
Kiermaier, Michael ;
Kurz, Sascha .
TOPICS IN FINITE FIELDS, 2015, 632 :157-176
[10]   Coding for errors and erasures in random network coding [J].
Koetter, Ralf ;
Kschischang, Frank R. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (08) :3579-3591