The decomposition of global conformal invariants IV: A proposition on local Riemannian invariants

被引:2
作者
Alexakis, Spyros [1 ]
机构
[1] Univ Toronto, Toronto, ON, Canada
关键词
Conformal geometry; Local Riemannian invariants; Differential invariants; BERGMAN-KERNEL; CONSTRUCTION; GEOMETRY;
D O I
10.1016/j.aim.2010.01.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This is the fourth in a series of papers where we prove a conjecture of Deser and Schwimmer regarding the algebraic structure of "global conformal invariants"; these are defined to be conformally invariant integrals of geometric scalars. The conjecture asserts that the integrand of any such integral can be expressed as a linear combination of a local conformal invariant, a divergence and of the Chern-Gauss-Bonnet integrand. The present paper lays out the second half of this entire work: The second half proves certain purely algebraic statements regarding local Riemannian invariants; these were used extensively in the first two papers in this series, see Alexakis (2007, 2009) [2,3]. These results may be of independent interest, applicable to related problems. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:515 / 597
页数:83
相关论文
共 20 条
[1]  
Alexakis S., ARXIV07111685
[2]  
ALEXAKIS S, ARXIV09123764
[3]  
ALEXAKIS S, ARXIV09123755
[4]  
ALEXAKIS S, ARXIV09123761
[5]  
ALEXAKIS S, ARXIV09123757
[6]  
ALEXAKIS S, ARXIV09123765
[7]   On the decomposition of global conformal invariants, I [J].
Alexakis, Spyros .
ANNALS OF MATHEMATICS, 2009, 170 (03) :1241-1306
[8]  
[Anonymous], 1985, Asterisque, hors serie
[9]   THOMASS STRUCTURE BUNDLE FOR CONFORMAL, PROJECTIVE AND RELATED STRUCTURES [J].
BAILEY, TN ;
EASTWOOD, MG ;
GOVER, AR .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1994, 24 (04) :1191-1217
[10]   INVARIANT-THEORY FOR CONFORMAL AND CR GEOMETRY [J].
BAILEY, TN ;
EASTWOOD, MG ;
GRAHAM, CR .
ANNALS OF MATHEMATICS, 1994, 139 (03) :491-552