Superconvergent biquadratic finite volume element method for two-dimensional Poisson's equations

被引:17
作者
Wang, Tongke [1 ]
Gu, Yuesheng [2 ]
机构
[1] Tianjin Normal Univ, Sch Math Sci, Tianjin 300387, Peoples R China
[2] Henan Inst Sci & Technol, Coll Informat Engn, Xinxiang, Henan, Peoples R China
关键词
Poisson's equation; Biquadratic finite volume element method; Alternating direction method; Optimal stress point; Error estimate; Superconvergence; ELLIPTIC-EQUATIONS; PARABOLIC EQUATIONS; POLYGONAL DOMAINS; GRIDS; ACCURACY; MESHES;
D O I
10.1016/j.cam.2009.12.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a kind of biquadratic finite volume element method is presented for two-dimensional Poisson's equations by restricting the optimal stress points of biquadratic interpolation as the vertices of control volumes. The method can be effectively implemented by alternating direction technique. It is proved that the method has optimal energy norm error estimates. The superconvergence of numerical gradients at optimal stress points is discussed and it is proved that the method has also superconvergence displacement at nodal points by a modified dual argument technique. Finally, a numerical example verifies the theoretical results and illustrates the effectiveness of the method. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:447 / 460
页数:14
相关论文
共 26 条
[1]  
[Anonymous], 2002, TEXTS APPL MATH
[2]  
[Anonymous], 2007, INTRO SCI COMPUTATIO
[3]   SOME ERROR-ESTIMATES FOR THE BOX METHOD [J].
BANK, RE ;
ROSE, DJ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (04) :777-787
[4]  
Cai ZQ, 2003, ADV COMPUT MATH, V19, P3
[5]   ON THE ACCURACY OF THE FINITE VOLUME ELEMENT METHOD FOR DIFFUSION-EQUATIONS ON COMPOSITE GRIDS [J].
CAI, ZQ ;
MCCORMICK, S .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (03) :636-655
[6]   Error estimates for a finite volume element method for elliptic PDES in nonconvex polygonal domains [J].
Chatzipantelidis, P ;
Lazarov, RD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 42 (05) :1932-1958
[7]   Error estimates for a finite volume element method for parabolic equations in convex polygonal domains [J].
Chatzipantelidis, P ;
Lazarov, RD ;
Thomée, V .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2004, 20 (05) :650-674
[8]  
Chen CM., 1995, HIGH ACCURACY THEORY
[9]   LP error estimates and superconvergence for covolume or finite volume element methods [J].
Chou, SH ;
Kwak, DY ;
Li, O .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2003, 19 (04) :463-486
[10]   Improved accuracy for locally one-dimensional methods for parabolic equations [J].
Douglas, J ;
Kim, S .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2001, 11 (09) :1563-1579