Quality of Multicenter Studies Using MRI Radiomics for Diagnosing Clinically Significant Prostate Cancer: A Systematic Review

被引:7
作者
Bleker, Jeroen [1 ]
Kwee, Thomas C.
Yakar, Derya
机构
[1] Univ Groningen, Univ Med Ctr Groningen, Med Imaging Ctr, Dept Radiol, Hanzepl 1, NL-9700 RB Groningen, Netherlands
来源
LIFE-BASEL | 2022年 / 12卷 / 07期
关键词
radiomics; multicenter MRI; prostate cancer; ACCURACY;
D O I
10.3390/life12070946
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Reproducibility and generalization are major challenges for clinically significant prostate cancer modeling using MRI radiomics. Multicenter data seem indispensable to deal with these challenges, but the quality of such studies is currently unknown. The aim of this study was to systematically review the quality of multicenter studies on MRI radiomics for diagnosing clinically significant PCa. Methods: This systematic review followed the 2020 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist. Multicenter studies investigating the value of MRI radiomics for the diagnosis of clinically significant prostate cancer were included. Quality was assessed using the checklist for artificial intelligence in medical imaging (CLAIM) and the radiomics quality score (RQS). CLAIM consisted of 42 equally important items referencing different elements of good practice AI in medical imaging. RQS consisted of 36 points awarded over 16 items related to good practice radiomics. Final CLAIM and RQS scores were percentage-based, allowing for a total quality score consisting of the average of CLAIM and RQS. Results: Four studies were included. The average total CLAIM score was 74.6% and the average RQS was 52.8%. The corresponding average total quality score (CLAIM + RQS) was 63.7%. Conclusions: A very small number of multicenter radiomics PCa classification studies have been performed with the existing studies being of bad or average quality. Good multicenter studies might increase by encouraging preferably prospective data sharing and paying extra care to documentation in regards to reproducibility and clinical utility.
引用
收藏
页数:13
相关论文
共 33 条
[1]   Big healthcare data: preserving security and privacy [J].
Abouelmehdi, Karim ;
Beni-Hessane, Abderrahim ;
Khaloufi, Hayat .
JOURNAL OF BIG DATA, 2018, 5 (01)
[2]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[3]   Artificial intelligence in cancer imaging: Clinical challenges and applications [J].
Bi, Wenya Linda ;
Hosny, Ahmed ;
Schabath, Matthew B. ;
Giger, Maryellen L. ;
Birkbak, Nicolai J. ;
Mehrtash, Alireza ;
Allison, Tavis ;
Arnaout, Omar ;
Abbosh, Christopher ;
Dunn, Ian F. ;
Mak, Raymond H. ;
Tamimi, Rulla M. ;
Tempany, Clare M. ;
Swanton, Charles ;
Hoffmann, Udo ;
Schwartz, Lawrence H. ;
Gillies, Robert J. ;
Huang, Raymond Y. ;
Aerts, Hugo J. W. L. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2019, 69 (02) :127-157
[4]   Single-center versus multi-center biparametric MRI radiomics approach for clinically significant peripheral zone prostate cancer [J].
Bleker, Jeroen ;
Yakar, Derya ;
van Noort, Bram ;
Rouw, Dennis ;
de Jong, Igle Jan ;
Dierckx, Rudi A. J. O. ;
Kwee, Thomas C. ;
Huisman, Henkjan .
INSIGHTS INTO IMAGING, 2021, 12 (01)
[5]   A Multi-Center, Multi-Vendor Study to Evaluate the Generalizability of a Radiomics Model for Classifying Prostate cancer: High Grade vs. Low Grade [J].
Castillo T., Jose M. ;
Starmans, Martijn P. A. ;
Arif, Muhammad ;
Niessen, Wiro J. ;
Klein, Stefan ;
Bangma, Chris H. ;
Schoots, Ivo G. ;
Veenland, Jifke F. .
DIAGNOSTICS, 2021, 11 (02)
[6]   Classification of Clinically Significant Prostate Cancer on Multi-Parametric MRI: A Validation Study Comparing Deep Learning and Radiomics [J].
Castillo T., Jose M. M. ;
Arif, Muhammad ;
Starmans, Martijn P. A. ;
Niessen, Wiro J. ;
Bangma, Chris H. ;
Schoots, Ivo G. ;
Veenland, Jifke F. .
CANCERS, 2022, 14 (01)
[7]   Magnetic Resonance Imaging Based Radiomic Models of Prostate Cancer: A Narrative Review [J].
Chaddad, Ahmad ;
Kucharczyk, Michael J. ;
Cheddad, Abbas ;
Clarke, Sharon E. ;
Hassan, Lama ;
Ding, Shuxue ;
Rathore, Saima ;
Zhang, Mingli ;
Katib, Yousef ;
Bahoric, Boris ;
Abikhzer, Gad ;
Probst, Stephan ;
Niazi, Tamim .
CANCERS, 2021, 13 (03) :1-22
[8]  
Cochetti G, 2020, UROL ONCOL-SEMIN ORI, V38, P623, DOI 10.1016/j.urolonc.2020.03.007
[9]   Harmonization strategies for multicenter radiomics investigations [J].
Da-Ano, R. ;
Visvikis, D. ;
Hatt, M. .
PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (24)
[10]   Accuracy and Agreement of PIRADSv2 for Prostate Cancer mpMRI: A Multireader Study [J].
Greer, Matthew D. ;
Brown, Anna M. ;
Shih, Joanna H. ;
Summers, Ronald M. ;
Marko, Jamie ;
Law, Yan Mee ;
Sankineni, Sandeep ;
George, Arvin K. ;
Merino, Maria J. ;
Pinto, Peter A. ;
Choyke, Peter L. ;
Turkbey, Baris .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2017, 45 (02) :579-585