Vapor-liquid and chemical equilibria model for formaldehyde-trioxane-sulfuric acid-water mixtures

被引:2
|
作者
Jiang, Siqi [1 ,2 ]
Zhang, Xianming [1 ,2 ,3 ]
Hu, Yufeng [1 ,2 ]
Yin, Liuyi [1 ,2 ]
Qi, Jianguang [1 ,2 ]
Ren, Chunxiao [1 ,2 ]
Mo, Shuqin [1 ,2 ]
机构
[1] China Univ Petr, State Key Lab Heavy Oil Proc, Beijing, Peoples R China
[2] China Univ Petr, High Pressure Fluid Phase Behav & Property Res La, Beijing, Peoples R China
[3] Ordos Inst Technol, Ordos, Inner Mongolia, Peoples R China
基金
国家自然科学基金重大项目; 中国国家自然科学基金;
关键词
vapor-liquid and chemical equilibria model; aqueous formaldehyde solutions containing sulphuric acid; trioxane production; role of catalyst; SOLVENT ELECTROLYTE SYSTEMS; UNIFAC GROUP-CONTRIBUTION; POLYETHYLENE-GLYCOL; REACTION-KINETICS; TERNARY-SYSTEM; COSMO-RS; PREDICTION; SOLUBILITY; HYDRATION; DENSITY;
D O I
10.1002/jctb.6254
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
BACKGROUND Trioxane (C3H6O3) is industrially produced from aqueous formaldehyde (HCHO) solutions through catalytic distillation catalyzed by sulfuric acid (H2SO4). Optimizing industrial process of the synthesis and developing new catalysts require a reliable model for the vapor-liquid equilibria in reaction mixture HCHO-C3H6O3-H2SO4- H2O and a deep understanding of the role of H2SO4 in the industrial production of trioxane. RESULTS Here the Maurer and co-workers's model and the LIFAC model along with their model parameters were invoked to develop such a model. The vapor-liquid equilibrium data in HCHO-C3H6O3-H2SO4-H2O and HCHO-salt-H2O were systematically measured and utilized to determine the newly introduced model parameters. The model thus-established provides a reliable method for calculating and predicting the vapor-liquid and chemical equilibria data in HCHO-C3H6O3-H2SO4- H2O and HCHO-salt-H2O. CONCLUSIONS The prediction results uncover that, in addition to its ability to accelerate the reaction, the catalyst H2SO4 has strong abilities to increase the activity of 'real' reactant for trioxane synthesis and to promote the phase separation that is very important for drastically increasing the yield of trioxane, reducing the energy requirement for the trioxane synthesis, and decreasing the formation of the by-product formic acid. (c) 2019 Society of Chemical Industry
引用
收藏
页码:719 / 729
页数:11
相关论文
共 50 条
  • [1] Vapor-liquid and chemical equilibria of formaldehyde-water mixtures
    Albert, M
    García, BC
    Kreiter, C
    Maurer, G
    AICHE JOURNAL, 1999, 45 (09) : 2024 - 2033
  • [2] VAPOR-LIQUID EQUILIBRIA OF HYDROCHLORIC ACID-WATER SYSTEM
    CHEN, EC
    MCGUIRE, G
    AICHE JOURNAL, 1970, 16 (04) : 686 - &
  • [3] VAPOR-LIQUID EQUILIBRIA OF ACETIC ACID-FORMIC ACID-WATER
    MURAYAMA, Y
    NIPPON KAGAKU ZASSHI, 1961, 82 (05): : 550 - &
  • [4] VAPOR-LIQUID EQUILIBRIA FOR AQUEOUS SULFURIC ACID
    GMITRO, JI
    VERMEULEN, T
    AICHE JOURNAL, 1964, 10 (05) : 740 - 746
  • [5] Vapor-liquid equilibria of the system acetane-acetic acid-water
    York, R
    Holmes, RC
    INDUSTRIAL AND ENGINEERING CHEMISTRY, 1942, 34 : 345 - 350
  • [6] VAPOR-LIQUID EQUILIBRIA - HYDROCHLORIC ACID-SULFURIC ACID-WATER AND HYDROCHLORIC ACID-CALCIUM CHLORIDE-WATER SYSTEM
    MORIYAMA, T
    SAKAYORI, T
    KOGYO KAGAKU ZASSHI, 1961, 64 (10): : 1877 - &
  • [7] Vapor-liquid and chemical equilibria model for formaldehyde+1,3,5-trioxane + methanol plus salt plus water system
    Zhang, Xianming
    Hu, Yufeng
    Ma, Weiting
    Qi, Jianguang
    Mo, Shuqin
    FLUID PHASE EQUILIBRIA, 2020, 507
  • [8] Vapor-Liquid Equilibria and Chemical Equilibria in the System (Formaldehyde plus Water plus Isoprenol)
    Dyga, Maximilian
    Keller, Andreas
    Hasse, Hans
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2021, 60 (11) : 4471 - 4483
  • [9] VAPOR-LIQUID EQUILIBRIA OF FORMALDEHYDE-METHANOL-WATER
    GREEN, SJ
    VENER, RE
    INDUSTRIAL AND ENGINEERING CHEMISTRY, 1955, 47 (01): : 103 - 109
  • [10] Effect of magnesium chloride on the isobaric vapor-liquid equilibria of formic acid-water system
    Yun, SH
    Kim, C
    Lee, ES
    Kim, YC
    FLUID PHASE EQUILIBRIA, 1998, 149 (1-2) : 209 - 221