Global existence of solutions for the heat equation with a nonlinear boundary condition

被引:7
作者
Kawakami, Tatsuki [1 ]
机构
[1] Tohoku Univ, Math Inst, Aoba Ku, Sendai, Miyagi 9808578, Japan
关键词
Global existence; Large time behavior; Initial-boundary value problem; Nonlinear boundary condition; ASYMPTOTIC-BEHAVIOR;
D O I
10.1016/j.jmaa.2010.02.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the initial-boundary value problem for the heat equation with a nonlinear boundary condition: {partial derivative(t)u = Delta u, x is an element of R(+)(N), t > 0, u(x, 0) = phi(x), x is an element of R(+)(N), -partial derivative u/partial derivative x(N) = u(p), x is an element of partial derivative R(+)(N), t > 0, where N >= 1, p > 1 + 1/N, and phi is an element of L(1)(R(+)(N)) boolean AND L(infinity)(R(+)(N)). We prove the existence of global solutions with a small initial data, and study the large time behavior of solutions. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:320 / 329
页数:10
相关论文
共 11 条
[1]  
Chlebk M., 1999, Rend. Mat. Appl. (7) 19, V4, P449
[2]  
Deng K., 1994, Acta Math. Univ. Comenian. (N.S.), V63, P169
[3]   On critical Fujita exponents for heat equations with nonlinear flux conditions on the boundary [J].
Galaktionov, VA ;
Levine, HA .
ISRAEL JOURNAL OF MATHEMATICS, 1996, 94 :125-146
[4]  
ISHIGE K, CALC VAR PA IN PRESS
[5]   On the Fujita exponent for a semilinear heat equation with a potential term [J].
Ishige, Kazuhiro .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 344 (01) :231-237
[6]   The Decay of the Solutions for the Heat Equation with a Potential [J].
Ishige, Kazuhiro ;
Ishiwata, Michinori ;
Kawakami, Tatsuki .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (06) :2673-2707
[7]   ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR SOME SEMILINEAR HEAT EQUATIONS IN RN [J].
Ishige, Kazuhiro ;
Kawakami, Tatsuki .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (04) :1351-1371
[8]  
Kawanago T, 1996, ANN I H POINCARE-AN, V13, P1
[9]  
Kawanago T, 1997, ADV MATH SCI APPL, V7, P367
[10]  
Quittner P, 2003, INDIANA U MATH J, V52, P875