The problem of Dirichlet for anisotropic quasilinear degenerate elliptic equations

被引:20
作者
Tersenov, Alkis S. [1 ]
Tersenov, Aris S.
机构
[1] Univ Crete, Dept Math, Iraklion 71409, Crete, Greece
[2] Univ Peloponnese, Dept Comp Sci & Technol, Tripoli 22100, Libya
关键词
degenerate elliptic equations; semilinear elliptic equations; a priori estimates;
D O I
10.1016/j.jde.2007.01.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Dirichlet problem for a class of anisotropic degenerate elliptic equations. New a priori estimates for solutions and for the gradient of solutions are established. Based on these estimates sufficient conditions guaranteeing the solvability of the problem are formulated. The results are new even in the semilinear case when the principal part is the Laplace operator. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:376 / 396
页数:21
相关论文
共 13 条
[1]   Multiple solutions for a non-homogeneous elliptic equation at the critical exponent [J].
Clapp, M ;
del Pino, M ;
Musso, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2004, 134 :69-87
[2]   Positive solutions of inhomogeneous elliptic equations with indefinite data [J].
Dai, QY ;
Yang, JF .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 58 (5-6) :571-589
[3]   Existence and nonexistence results for anisotropic quasilinear elliptic equations [J].
Fragalà, I ;
Gazzola, F ;
Kawohl, B .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2004, 21 (05) :715-734
[5]  
Gilbar D., 1983, ELLIPTIC PARTIAL DIF
[6]  
KRUZHKOV SN, 1979, T SEM PETROVSK, V5, P217
[7]  
Lieberman GM, 2005, ADV DIFFERENTIAL EQU, V10, P767
[8]  
Lions J. L., 1969, QUELQUES METHODES RE
[9]  
POKHOZHAEV SI, 1965, SOV MATH DOKL, V6, P1408
[10]   ON NONHOMOGENEOUS ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENT [J].
TARANTELLO, G .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1992, 9 (03) :281-304