Energy transfer, pressure tensor, and heating of kinetic plasma

被引:134
|
作者
Yang, Yan [1 ,2 ]
Matthaeus, William H. [2 ]
Parashar, Tulasi N. [2 ]
Haggerty, Colby C. [2 ]
Roytershteyn, Vadim [3 ]
Daughton, William [4 ]
Wan, Minping [5 ]
Shi, Yipeng [1 ]
Chen, Shiyi [1 ,5 ]
机构
[1] Peking Univ, Coll Engn, Ctr Appl Phys & Technol, State Key Lab Turbulence & Complex Syst, Beijing 100871, Peoples R China
[2] Univ Delaware, Dept Phys & Astron, Newark, DC 19716 USA
[3] Space Sci Inst, Boulder, CO 80301 USA
[4] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[5] Southern Univ Sci & Technol China, Dept Mech & Aerosp Engn, Shenzhen 518055, Guangdong, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
LARGE-EDDY SIMULATION; FINE-SCALE MOTIONS; SOLAR-WIND; MAGNETIC RECONNECTION; MAGNETOHYDRODYNAMIC TURBULENCE; CURRENT SHEETS; DISSIPATION; HYPOTHESIS; EVOLUTION; VORTICITY;
D O I
10.1063/1.4990421
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Kinetic plasma turbulence cascade spans multiple scales ranging from macroscopic fluid flow to sub-electron scales. Mechanisms that dissipate large scale energy, terminate the inertial range cascade, and convert kinetic energy into heat are hotly debated. Here, we revisit these puzzles using fully kinetic simulation. By performing scale-dependent spatial filtering on the Vlasov equation, we extract information at prescribed scales and introduce several energy transfer functions. This approach allows highly inhomogeneous energy cascade to be quantified as it proceeds down to kinetic scales. The pressure work, -(P . del) . u, can trigger a channel of the energy conversion between fluid flow and random motions, which contains a collision-free generalization of the viscous dissipation in collisional fluid. Both the energy transfer and the pressure work are strongly correlated with velocity gradients. Published by AIP Publishing.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Energy Transfer, Discontinuities, and Heating in the Inner Heliosphere Measured with a Weak and Local Formulation of the Politano-Pouquet Law
    David, V
    Galtier, S.
    Sahraoui, F.
    Hadid, L. Z.
    ASTROPHYSICAL JOURNAL, 2022, 927 (02)
  • [32] Electron heating and energy inventory during asymmetric reconnection in a laboratory plasma
    Yoo, Jongsoo
    Na, Byungkeun
    Jara-Almonte, J.
    Yamada, Masaaki
    Ji, Hantao
    Roytershteyn, V.
    Argall, M. R.
    Fox, W.
    Chen, Li-Jen
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2017, 122 (09) : 9264 - 9281
  • [33] Scaling laws for the energy transfer in space plasma turbulence
    Marino, Raffaele
    Sorriso-Valvo, Luca
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2023, 1006 : 1 - 144
  • [34] A study of particle acceleration, heating, power deposition, and the damping length of kinetic Alfvén waves in non-Maxwellian coronal plasma
    Ayaz, S.
    Zank, G. P.
    Khan, I. A.
    Li, G.
    Rivera, Y. J.
    ASTRONOMY & ASTROPHYSICS, 2025, 694
  • [35] Hybrid-kinetic Simulations of Ion Heating in Alfvenic Turbulence
    Arzamasskiy, Lev
    Kunz, Matthew W.
    Chandran, Benjamin D. G.
    Quataert, Eliot
    ASTROPHYSICAL JOURNAL, 2019, 879 (01)
  • [36] Effect of flow topology on the kinetic energy flux in compressible isotropic turbulence
    Wang, Jianchun
    Wan, Minping
    Chen, Song
    Xie, Chenyue
    Zheng, Qinmin
    Wang, Lian-Ping
    Chen, Shiyi
    JOURNAL OF FLUID MECHANICS, 2020, 883
  • [37] Anisotropic turbulence of kinetic Alfven waves and heating in solar corona
    Singh, Hemam Dinesh
    Jatav, Bheem Singh
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2019, 19 (12)
  • [38] Turbulent Kinetic Energy in the Energy Balance of a Solar Flare
    Kontar, E. P.
    Perez, J. E.
    Harra, L. K.
    Kuznetsov, A. A.
    Emslie, A. G.
    Jeffrey, N. L. S.
    Bian, N. H.
    Dennis, B. R.
    PHYSICAL REVIEW LETTERS, 2017, 118 (15)
  • [39] Filamentary plasma eruptions and the heating and acceleration of electrons
    Isliker, Heinz
    Cathey, Andres
    Hoelzl, Matthias
    Pamela, Stanislas
    Vlahos, Loukas
    PHYSICS OF PLASMAS, 2022, 29 (11)
  • [40] Ion transport and heating in simulations of plasma turbulence
    Pecora, F.
    NUOVO CIMENTO C-COLLOQUIA AND COMMUNICATIONS IN PHYSICS, 2019, 42 (05):