In this study, a particle swarm optimization method is employed to find the optimal operating parameters and geometrical parameters, which maximize the coefficient of performance (COP) of an inertance pulse tube refrigerator (IPTR). The considered decision variables of the IPTR are the charging pressure, which varies from 15 to 25 bar, operating frequency varying from 20 to 60 Hz, geometrical parameters, such as diameter varying from 15.0 to 25.00 mm, and length varying from 40.0 to 70 mm of the regenerator; diameter varying from 12.0 to 20.00 mm and length varying from 40.0 to 80 mm of the pulse tube; and diameter varying from 2.0 to 6.00 mm and length varying from 1.0 to 3.0 m of the inertance tube. A 1D numerical model, based on the finite volume discretization of governing equations has been selected to build the initial design matrix and solve the governing continuity, momentum, and energy equations. Analysis of variance is performed using the result obtained from the numerical simulation to visualize the variations of COP as a combination of various input parameters. It is observed that after optimizing the input parameters, the COP of the IPTR increases by 15.14%.