General affine surface areas

被引:163
作者
Ludwig, Monika [1 ]
机构
[1] NYU, Polytech Inst, Dept Math, MetroTech Ctr 6, Brooklyn, NY 11201 USA
关键词
Aftine surface area; Centro-aftine surface area; Valuation; P SOBOLEV INEQUALITIES; MINKOWSKI-FIREY THEORY; ISOPERIMETRIC-INEQUALITIES; CONVEX HYPERSURFACES; STEPWISE APPROXIMATION; L-0-MINKOWSKI PROBLEM; VALUED VALUATIONS; BODIES; SEMICONTINUITY; REGULARITY;
D O I
10.1016/j.aim.2010.02.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Two families of general affine surface areas are introduced. Basic properties and affine isoperimetric inequalities for these new affine surface areas as well as for L phi affine surface areas are established. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2346 / 2360
页数:15
相关论文
共 54 条
  • [1] Andrews B, 1999, J REINE ANGEW MATH, V506, P43
  • [2] Andrews B, 1996, J DIFFER GEOM, V43, P207
  • [3] [Anonymous], 2007, GRUNDLEHREN MATH WIS
  • [4] Sylvester's question:: The probability that n points are in convex position
    Bárány, I
    [J]. ANNALS OF PROBABILITY, 1999, 27 (04) : 2020 - 2034
  • [5] Barany I, 1997, J REINE ANGEW MATH, V484, P71
  • [6] BLASCHKE W, 1923, DIFFERENTIALGEOMETRI, VII
  • [7] The Lp-Busemann-Petty centroid inequality
    Campi, S
    Gronchi, P
    [J]. ADVANCES IN MATHEMATICS, 2002, 167 (01) : 128 - 141
  • [8] The Lp-Minkowski problem and the Minkowski problem in centroaffine geometry
    Chou, Kai-Seng
    Wang, Xu-Jia
    [J]. ADVANCES IN MATHEMATICS, 2006, 205 (01) : 33 - 83
  • [9] Affine Moser-Trudinger and Morrey-Sobolev inequalities
    Cianchi, Andrea
    Lutwak, Erwin
    Yang, Deane
    Zhang, Gaoyong
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 36 (03) : 419 - 436
  • [10] Federer H., 1969, Geometric Measure Theory. Classics in Mathematics