Picosecond Radiography Combined with Other Techniques to Investigate Microjetting from Laser Shock-loaded Grooves

被引:3
作者
de Resseguier, T. [1 ]
Roland, C. [1 ,2 ]
Prudhomme, G. [2 ]
Brambrink, E. [3 ,4 ]
Franzkowiak, J. E. [2 ]
Loison, D. [5 ]
Lescoute, E. [2 ]
Sollier, A. [2 ]
Berthe, L. [6 ]
机构
[1] Univ Poitiers, Inst Pprime, CNRS, UPR 3346,ENSMA, F-86961 Futuroscope, France
[2] CEA, DAM, DIF, F-91297 Arpajon, France
[3] Univ Paris Saclay, CEA, Ecole Polytech, LULI,CNRS, F-91128 Palaiseau, France
[4] Univ Paris, UPMC, Sorbonne Univ, LULI,CNRS, F-75252 Paris, France
[5] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France
[6] ENSAM ParisTech, CNRS, PIMM, 151 Bd Hop, F-75013 Paris, France
来源
SHOCK COMPRESSION OF CONDENSED MATTER - 2017 | 2018年 / 1979卷
关键词
D O I
10.1063/1.5044853
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Debris ejection upon shock breakout at a rough surface is a key issue for many applications, including pyrotechnics and inertial confinement fusion. For a few years, we have used laser driven shocks to investigate microjetting in metallic samples with calibrated grooves in their free surface. Fast transverse optical shadowgraphy, time-resolved measurements of both planar surface and jet tip velocities, and post-shock analysis of recovered material have provided data over ranges of small spatial and temporal scales, short loading pulses (ns-order) and extremely high strain rates. The new experiment presented here involves two laser beams in a pump-probe configuration. Picosecond laser irradiation of a thin copper wire generates x-rays which are used to radiograph the microjets expanding from single grooves in tin and copper samples shock-loaded by a longer, nanosecond laser pulse. Such ultrashort radiography can be used to infer the density gradients along the jets as well as inside the samples deep beneath the grooves. Thus, combining this x-ray probe with the other experimental techniques mentioned above provides a more complete insight into the physics of microjetting at very high loading rates and the ballistic properties of the resulting ejecta.
引用
收藏
页数:5
相关论文
共 14 条
[11]   Experimental-calculation simulation of the ejection of particles from a shock-loaded surface [J].
Mikhailov, A. L. ;
Ogorodnikov, V. A. ;
Sasik, V. S. ;
Raevskii, V. A. ;
Lebedev, A. I. ;
Zotov, D. E. ;
Erunov, S. V. ;
Syrunin, M. A. ;
Sadunov, V. D. ;
Nevmerzhitskii, N. V. ;
Lobastov, S. A. ;
Burtsev, V. V. ;
Mishanov, A. V. ;
Kulakov, E. V. ;
Satarova, A. V. ;
Georgievskaya, A. B. ;
Knyazev, V. N. ;
Kleshchevnikov, O. A. ;
Antipov, M. V. ;
Glushikhin, V. V. ;
Yurtov, I. V. ;
Utenkov, A. A. ;
Sen'kovskii, E. D. ;
Abakumov, S. A. ;
Presnyakov, D. V. ;
Kalashnik, I. A. ;
Panov, K. N. ;
Arinin, V. A. ;
Tkachenko, B. I. ;
Filyaev, V. N. ;
Chapaev, A. V. ;
Andramanov, A. V. ;
Lebedeva, M. O. ;
Igonin, V. V. .
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2014, 118 (05) :785-797
[12]  
Roland C., 2016, J DYNAMIC BEHAV MAT, V3, P156
[13]   Ejecta particle size distributions for shock loaded Sn and Al metals [J].
Sorenson, DS ;
Minich, RW ;
Romero, JL ;
Tunnell, TW ;
Malone, RM .
JOURNAL OF APPLIED PHYSICS, 2002, 92 (10) :5830-5836
[14]   Probing the underlying physics of ejecta production from shocked Sn samples [J].
Zellner, M. B. ;
McNeil, W. Vogan ;
Hammerberg, J. E. ;
Hixson, R. S. ;
Obst, A. W. ;
Olson, R. T. ;
Payton, J. R. ;
Rigg, P. A. ;
Routley, N. ;
Stevens, G. D. ;
Turley, W. D. ;
Veeser, L. ;
Buttler, W. T. .
JOURNAL OF APPLIED PHYSICS, 2008, 103 (12)