Nonaxisymmetric simulations of the Princeton magnetorotational instability experiment with insulating and conducting axial boundaries

被引:8
作者
Choi, Dahan [1 ]
Ebrahimi, Fatima [1 ,2 ]
Caspary, Kyle J. [2 ]
Gilson, Erik P. [2 ]
Goodman, Jeremy [1 ]
Ji, Hantao [1 ,2 ]
机构
[1] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA
[2] Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA
基金
美国国家航空航天局; 美国国家科学基金会;
关键词
SHEAR INSTABILITY; TURBULENCE; TRANSPORT; STABILITY; DISKS; LAYER;
D O I
10.1103/PhysRevE.100.033116
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Stability and nonlinear evolution of rotating magnetohydrodynamic flows in the Princeton magnetorotational instability (MRI) experiment are examined using three-dimensional non-axisymmetric simulations. In particular, the effect of axial boundary conductivity on a free Stewartson-Shercliff layer (SSL) is numerically investigated using the spectral finite-element Maxwell and Navier Stokes (SFEMaNS) code. The free SSL is established by a sufficiently strong magnetic field imposed axially across the differentially rotating fluid with two rotating rings enforcing the boundary conditions. Numerical simulations show that the response of the bulk fluid flow is vastly different in the two different cases of insulating and conducting end caps. We find that, for the insulating end caps, there is a transition from stability to instability of a Kelvin-Helmholtz-like mode that saturates at an azimuthal mode number m = 1, whereas for the conducting end caps, the reinforced coupling between the magnetic field and the bulk fluid generates a strong radially localized shear in the azimuthal velocity resulting in axisymmetric Rayleigh-like modes even at reduced thresholds for the axial magnetic field. For reference, three-dimensional nonaxisymmetric simulations have also been performed in the MRI unstable regime to compare the modal structures.
引用
收藏
页数:10
相关论文
共 36 条
[1]   Instability, turbulence, and enhanced transport in accretion disks [J].
Balbus, SA ;
Hawley, JF .
REVIEWS OF MODERN PHYSICS, 1998, 70 (01) :1-53
[2]   A POWERFUL LOCAL SHEAR INSTABILITY IN WEAKLY MAGNETIZED DISKS .1. LINEAR-ANALYSIS [J].
BALBUS, SA ;
HAWLEY, JF .
ASTROPHYSICAL JOURNAL, 1991, 376 (01) :214-222
[3]   Effects of axial boundary conductivity on a free Stewartson-Shercliff layer [J].
Caspary, Kyle J. ;
Choi, Dahan ;
Ebrahimi, Fatima ;
Gilson, Erik P. ;
Goodman, Jeremy ;
Ji, Hantao .
PHYSICAL REVIEW E, 2018, 97 (06)
[4]   Global Hall-MHD simulations of magnetorotational instability in a plasma Couette flow experiment [J].
Ebrahimi, F. ;
Lefebvre, B. ;
Forest, C. B. ;
Bhattacharjee, A. .
PHYSICS OF PLASMAS, 2011, 18 (06)
[5]   Nonlinear stability of laboratory quasi-Keplerian flows [J].
Edlund, E. M. ;
Ji, H. .
PHYSICAL REVIEW E, 2014, 89 (02)
[6]  
Ekman W., 1905, Ark. Mat. Astron. Fys, V2, P1
[7]   The role of boundaries in the magnetorotational instability [J].
Gissinger, Christophe ;
Goodman, Jeremy ;
Ji, Hantao .
PHYSICS OF FLUIDS, 2012, 24 (07)
[8]   Magnetorotational instability of dissipative Couette flow [J].
Goodman, J ;
Ji, HT .
JOURNAL OF FLUID MECHANICS, 2002, 462 :365-382
[9]   Nonlinear magnetohydrodynamics in axisymmetric heterogeneous domains using a Fourier/finite element technique and an interior penalty method [J].
Guermond, J-L ;
Laguerre, R. ;
Leorat, J. ;
Nore, C. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (08) :2739-2757
[10]  
Hartmann J., 1937, K DAN VIDENSK SELSK, V6, P1