3D printed tubular lattice metamaterials for mechanically robust stents

被引:46
|
作者
Jiang, Huan [1 ]
Ziegler, Hannah [1 ]
Zhang, Zhennan [1 ]
Zhang, Heng [2 ,3 ]
Le Barbenchon, Louise [4 ]
Atre, Sundar [1 ]
Chen, Yanyu [1 ]
机构
[1] Univ Louisville, Dept Mech Engn, Louisville, KY 40292 USA
[2] Waseda Univ, Dept Appl Mech & Aerosp Engn, Shinjuku Ku, 3-4-1 Okubo, Tokyo 1698555, Japan
[3] Univ Shanghai Sci & Technol, Sch Mech Engn, Shanghai 200093, Peoples R China
[4] Arts & Metiers ParisTech, Esplanade Arts & Metiers, I2M Bordeaux, CNRS, F-33405 Talence, France
关键词
Tubular structure; Stents; Metamaterials; Ductility; 3D printing; BEHAVIOR; PERFORMANCE; OUTCOMES; GRAFTS;
D O I
10.1016/j.compositesb.2022.109809
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Coronary artery disease (CAD) is the narrowing or blockage of the coronary arteries, usually caused by atherosclerosis. An interventional procedure using stents is a promising approach for treating CAD because stents can effectively open narrowed coronary arteries to improve blood flow to the heart. However, stents often suffer from catastrophic failures, such as fractures and migration of ligaments, resulting in fatal clinical events. In this work, we report a new type of tubular lattice metamaterial with enhanced mechanical resilience under radial compression, which can be used as an alternative for the current stent design. We begin by comparing the radial mechanical performance of the proposed auxetic tubular lattice (ATL) with the conventional diamond tubular lattice (DTL). Our results show that the ductility of ATL increases by 72.7% compared with that of the DTL structure. The finite element simulations reveal that the stress is more uniformly spread on the sinusoidal ligaments for ATL, while rather concentrated on the joints of straight ligaments for DTL. This phenomenon is intrinsically due to the bending of sinusoidal ligaments along both radial and axial directions, while straight beams bend mainly along the radial direction. We then investigated the effects of the geometrical parameters of the sinusoidal ligament on radial mechanical performance. Experimental results indicate that the beam depth h/l has the most significant effect on the stiffness and peak load. The stiffness and maximum load surge by 789% and 1131%, respectively, when h/l increases from 0.15 to 0.30. In contrast, the beam amplitude A/l has a minor effect on the stiffness and peak load compared to beam depth and beam thickness. However, increasing the amplitude of the sinusoidal ligament can enlarge the ductility strikingly. The ductility can increase by 67.5% if the amplitude is augmented from A/l = 0.1 to A/l = 0.35. The findings from this work can provide guidance for designing more mechanically robust stents for medical engineering.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] 3D metamaterials
    Muamer Kadic
    Graeme W. Milton
    Martin van Hecke
    Martin Wegener
    Nature Reviews Physics, 2019, 1 : 198 - 210
  • [32] 3D metamaterials
    Mehta, Rupal
    MATERIALS WORLD, 2008, 16 (02) : 5 - 5
  • [33] 3D metamaterials
    Kadic, Muamer
    Milton, Graeme W.
    van Hecke, Martin
    Wegener, Martin
    NATURE REVIEWS PHYSICS, 2019, 1 (03) : 198 - 210
  • [34] Electrospinning on 3D Printed Polymers for Mechanically Stabilized Filter Composites
    Kozior, Tomasz
    Mamun, Al
    Trabelsi, Marah
    Wortmann, Martin
    Lilia, Sabantina
    Ehrmann, Andrea
    POLYMERS, 2019, 11 (12)
  • [35] Multifunctional 3D lattice metamaterials for vibration mitigation and energy absorption
    Jiang, Weifeng
    Yin, Guofu
    Xie, Luofeng
    Yin, Ming
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2022, 233
  • [36] 3D printed polymeric formwork for lattice cementitious composites
    Song, Jian
    Cao, Mengqin
    Cai, Lianmin
    Zhou, Yizhou
    Chen, Junying
    Liu, Su
    Zhou, Bo
    Lu, Yang
    Zhang, Jiaqing
    Long, Wujian
    Li, Lixiao
    JOURNAL OF BUILDING ENGINEERING, 2021, 43
  • [37] Natural Frequencies of a Simple 3D Printed Lattice Structure
    Monkova, Katarina
    Monka, Peter Pavol
    Vanca, Jan
    Hricova, Romana
    Knapcikova, Lucia
    Kozak, Drazan
    Beno, Pavel
    2021 12TH INTERNATIONAL CONFERENCE ON MECHANICAL AND AEROSPACE ENGINEERING (ICMAE), 2021, : 171 - 175
  • [38] 3D printed architected lattice structures by material jetting
    Mora, Samantha
    Pugno, Nicola M.
    Misseroni, Diego
    MATERIALS TODAY, 2022, 59 : 107 - 132
  • [39] 3D Printed Tubular Scaffolds with Massively Tailorable Mechanical Behavior
    Pickering, Edmund
    Paxton, Naomi C.
    Bo, Arixin
    O'Connell, Bridget
    King, Mitchell
    Woodruff, Maria A.
    ADVANCED ENGINEERING MATERIALS, 2022, 24 (11)
  • [40] In Situ Pyrolysis of 3D Printed Building Blocks for Functional Nanoscale Metamaterials
    Sun, Qing
    Dolle, Christian
    Kurpiers, Chantal
    Kraft, Kristian
    Islam, Monsur
    Schwaiger, Ruth
    Gumbsch, Peter
    Eggeler, Yolita M. M.
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (20)