In-silico pharmacophoric and molecular docking-based drug discovery against the Main Protease (Mpro) of SARS-CoV-2, a causative agent COVID-19

被引:4
|
作者
Haider, Zeshan [1 ]
Subhani, Muhammad Muneeb [1 ]
Farooq, Muhammad Ansar [2 ]
Ishaq, Maryum [1 ]
Khalid, Maryam [1 ]
Akram, Muhammad Numan [3 ]
Khan, Rao Sohail Ahmad [1 ]
Niazi, Adnan Khan [1 ]
机构
[1] Univ Agr Faisalabad UAF, Ctr Agr Biochem & Biotechnol CABB, Faisalabad, Pakistan
[2] Fauji Fertilizer Co Ltd, Rawalpindi, Pakistan
[3] Faisalabad Med Univ, Allied Hosp, Dept Neurol, Faisalabad, Pakistan
关键词
SARS-CoV-2; N3; Inhibitor; ZINC database; molecular docking; virtual screening; drug design; CORONAVIRUS; PREDICTION; TARGET;
D O I
10.36721/PJPS.2020.33.6.REG.2697-2705.1
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
COVID-19 (Coronavirus Disease 2019) caused by a novel `SARS-CoV-2' virus resulted in public health emergencies across the world. An effective vaccine to cure this virus is not yet available, thus requires concerted efforts at various scales. In this study, we employed Computer-Aided Drug Design (CADD) based approach to identify the drug-like compounds - inhibiting the replication of the main protease (Mpro) of SARS-CoV-2. Our database search using an online tool "ZINC pharmer" retrieved similar to 1500 compounds based on pharmacophore features. Lipinski's rule was applied to further evaluate the drug-like compounds, followed by molecular docking-based screening, and the selection of screening ligand complex with M-pro based on S-score (higher than reference inhibitor) and root-mean-square deviation (RMSD) value (less than reference inhibitor) using AutoDock 4.2. Resultantly, similar to 200 compounds were identified having strong interaction with M-pro of SARS-CoV-2. After evaluating their binding energy using the AutoDock 4.2 software, three compounds ( ZINC20291569, ZINC90403206, ZINC95480156) were identified that showed highest binding energy with M-pro of SARS-CoV-2 and strong inhibition effect than the N3 (reference inhibitor). A good binding energy, drug likeness and effective pharmacokinetic parameters suggest that these candidates have greater potential to stop the replication of SARS-CoV-2, hence might lead to the cure of COVID-19.
引用
收藏
页码:2697 / 2705
页数:9
相关论文
共 50 条
  • [41] In silico molecular docking analysis for repurposing approved antiviral drugs against SARS-CoV-2 main protease
    Khater, Ibrahim
    Nassar, Aaya
    BIOCHEMISTRY AND BIOPHYSICS REPORTS, 2021, 27
  • [42] In-silico docking studies of selected phytochemicals against papain like protease of SARS-Cov-2
    Saranya P.
    Karunya R.
    Keerthi Varshini G.
    Kowsikan K.
    Prathiksha R.
    Vegetos, 2023, 36 (1): : 188 - 194
  • [43] In silico investigation of Komaroviquinone as a potential inhibitor of SARS-CoV-2 main protease (Mpro): Molecular docking, molecular dynamics, and QM/MM approaches
    Santos, Samuel J. M.
    Valentini, Antoninho
    JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2024, 126
  • [44] Discovery of alliin as a putative inhibitor of the main protease of SARS-CoV-2 by molecular docking
    Cheng, Bijun
    Li, Tianjiao
    BIOTECHNIQUES, 2020, 69 (02) : 109 - +
  • [45] Molecular docking, molecular dynamic and drug-likeness studies of natural flavonoids as inhibitors for SARS-CoV-2 main protease (Mpro)
    Oktavia, Listiana
    Praptivvi, Praptiwi
    Agusta, Andria
    JOURNAL OF RESEARCH IN PHARMACY, 2021, 25 (06): : 998 - 1009
  • [46] Computational Simulation of HIV Protease Inhibitors to the Main Protease (Mpro) of SARS-CoV-2: Implications for COVID-19 Drugs Design
    Yu, Wei
    Wu, Xiaomin
    Zhao, Yizhen
    Chen, Chun
    Yang, Zhiwei
    Zhang, Xiaochun
    Ren, Jiayi
    Wang, Yueming
    Wu, Changwen
    Li, Chengming
    Chen, Rongfeng
    Wang, Xiaoli
    Zheng, Weihong
    Liao, Huaxin
    Yuan, Xiaohui
    MOLECULES, 2021, 26 (23):
  • [47] In Silico Discovery of SARS-CoV-2 Main Protease Inhibitors Using Docking, Molecular Dynamics, and Fragment Molecular Orbital Calculations
    Ishikawa, Takeshi
    Matsumoto, Kenji
    Hamada, Toshiyuki
    Koze, Hinako
    Baba, Masanori
    Okamoto, Mika
    Sudoh, Masayuki
    JOURNAL OF PHYSICAL CHEMISTRY B, 2025, 129 (06): : 1740 - 1749
  • [48] Molecular interaction analysis of Sulawesi propolis compounds with SARS-CoV-2 main protease as preliminary study for COVID-19 drug discovery
    Sahlan, Muhamad
    Irdiani, Rafidha
    Flamandita, Darin
    Aditama, Reza
    Alfarraj, Saleh
    Ansari, Mohammad Javed
    Khayrani, Apriliana Cahya
    Pratami, Diah Kartika
    Lischer, Kenny
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2021, 33 (01)
  • [49] In silico discovery of novel inhibitors from Northern African natural products database against main protease (Mpro) of SARS-CoV-2
    Byadi, Said
    Oblak, Domen
    Kassmi, Yassine
    Sadik, Karima
    Hachim, Mouhi Eddine
    Podlipnik, Crtomir
    Aboulmouhajir, Aziz
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2023, 41 (07): : 2900 - 2910
  • [50] Inhibitory effects of selected isoquinoline alkaloids against main protease (Mpro) of SARS-CoV-2, in silico study
    Morteza Sadeghi
    Mehran Miroliaei
    In Silico Pharmacology, 10 (1)