On the stability of a weighted finite difference scheme for wave equation with nonlocal boundary conditions

被引:18
作者
Novickij, Jurij [1 ]
Stikonas, Arturas [2 ]
机构
[1] Vilnius Univ, Fac Math & Informat, LT-03225 Vilnius, Lithuania
[2] Vilnius Univ, Inst Math & Informat, LT-08663 Vilnius, Lithuania
来源
NONLINEAR ANALYSIS-MODELLING AND CONTROL | 2014年 / 19卷 / 03期
关键词
integral conditions; hyperbolic equation; weighted difference scheme; spectrum analysis; STURM-LIOUVILLE PROBLEM; OPERATOR; SPECTRUM;
D O I
10.15388/NA.2014.3.10
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the stability of a weighted finite difference scheme for a linear hyperbolic equation with nonlocal integral boundary condition. By studying the spectrum of the transition matrix of the three-layered difference scheme we obtain a sufficient stability condition in a special matrix norm.
引用
收藏
页码:460 / 475
页数:16
相关论文
共 27 条
[1]  
[Anonymous], 1998, MATH MODEL ANAL, DOI DOI 10.3846/13926292.1998.9637104
[2]   Stable difference schemes for the hyperbolic problems subject to nonlocal boundary conditions with self-adjoint operator [J].
Ashyralyev, Allaberen ;
Yildirim, Ozgur .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (03) :1124-1131
[3]   STEPWISE STABILITY FOR THE HEAT-EQUATION WITH A NONLOCAL CONSTRAINT [J].
CAHLON, B ;
KULKARNI, DM ;
SHI, P .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (02) :571-593
[4]  
Cannon J.R., 1963, Quarterly of Applied Mathematics, V21, P155, DOI DOI 10.1090/QAM/160437
[5]  
Cheniguel A., 2013, P INT MULTICONFERENC, VII, P535
[6]  
Collatz L., 1964, FUNKTIONAL ANAL NUME
[7]  
Day W.A., 1985, HEAT CONDUCTION LINE, DOI [10.1007/978-1-4613-9555-3, DOI 10.1007/978-1-4613-9555-3]
[8]   Study of the norm in stability problems for nonlocal difference schemes [J].
Gulin, A. V. ;
Ionkin, N. I. ;
Morozova, V. A. .
DIFFERENTIAL EQUATIONS, 2006, 42 (07) :974-984
[9]  
Hairer Ernst., 1987, Springer Ser. in Comput. Math, V8
[10]   On the stability of an explicit difference scheme for hyperbolic equations with nonlocal boundary conditions [J].
Ivanauskas, F. F. ;
Novitski, Yu A. ;
Sapagovas, M. P. .
DIFFERENTIAL EQUATIONS, 2013, 49 (07) :849-856