Can Online Aerosol Mass Spectrometry Analysis Classify Secondary Organic Aerosol (SOA) and Oxidized Primary Organic Aerosol (OPOA)? A Case Study of Laboratory and Field Studies of Indonesian Biomass Burning

被引:12
作者
Budisulistiorini, Sri Hapsari [3 ,5 ]
Chen, Jing [1 ,2 ,3 ]
Itoh, Masayuki [4 ]
Kuwata, Mikinori [2 ,3 ,6 ,7 ]
机构
[1] Chongqing Univ, Coll Environm & Ecol, Chongqing 400044, Peoples R China
[2] Nanyang Technol Univ, Earth Observ Singapore, Singapore 639798, Singapore
[3] Campus Res Excellence & Technol Enterprise CREATE, Singapore 138602, Singapore
[4] Univ Hyogo, Sch Human Sci & Environm, Himeji, Hyogo 6700092, Japan
[5] Univ York, Wolfson Atmospher Chem Labs, York YO10 5DD, N Yorkshire, England
[6] Peking Univ, Dept Atmospher & Ocean Sci, Sch Phys, Beijing 100871, Peoples R China
[7] Peking Univ, Beijing Innovat Ctr Engn Sci & Adv Technol BIC ES, Beijing 100871, Peoples R China
来源
ACS EARTH AND SPACE CHEMISTRY | 2021年 / 5卷 / 12期
基金
新加坡国家研究基金会;
关键词
mass spectra; high molecular weight species ions; organic aerosol; biomass burning; photooxidation; flow reactor; factor analysis; CHEMICAL-COMPOSITION; SOURCE APPORTIONMENT; PARTICULATE MATTER; HYDROCARBON-LIKE; EMISSIONS; COMPONENTS; AIRCRAFT; SMOKE; PHOTOOXIDATION; QUANTIFICATION;
D O I
10.1021/acsearthspacechem.1c00319
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Organic aerosol (OA) makes up a significant fraction of ambient particulate matter, including those emitted during the wildfire. Oxidized organic aerosol (OOA), obtained by factor analysis, dominates OA as the air mass ages. OOA includes secondary organic aerosol (SOA) and oxidized primary organic aerosol (OPOA). OPOA and SOA formations affect the OA scheme in the chemical models. Thus, their identification is essential. We aim to test the capability of the online aerosol mass spectrometry analysis to identify SOA and OPOA through laboratory studies. First, we separated particle- and gas-phase species emitted from the combustion of Indonesian peat and biomasses. Then, they were reacted in an oxidation reactor, where a time-of-flight aerosol chemical speciation monitor measured the oxidation products. Factor analysis was used to identify OPOA from the measured OA. We examined OPOA and SOA characteristics using the widely used fractional contributions of ion signal at mass-to-charge ratios (m/z's) 44 and 43 (f(44) vs f(43)) and m/z's 44 and 60 (f(44) vs f(60)). The OPOA and SOA were found to be indistinguishable. However, by examining all ions, particularly, the higher molecular weight species (m/z >= 100), we could differentiate the OPOA from some SOA. Additionally, OPOA and SOA mass spectra were compared to the ambient OOA factor observed in Singapore during the Indonesian wildfire in 2015. The comparison suggested that the observed OOA contained a mixture of SOA and OPOA. This study underlines the advantage of using detailed chemical information for characterizing OPOA and SOA in future development.
引用
收藏
页码:3511 / 3522
页数:12
相关论文
共 61 条
  • [1] Dominant contribution of oxygenated organic aerosol to haze particles from real-time observation in Singapore during an Indonesian wildfire event in 2015
    Budisulistiorini, Sri Hapsari
    Riva, Matthieu
    Williams, Michael
    Miyakawa, Takuma
    Chen, Jing
    Itoh, Masayuki
    Surratt, Jason D.
    Kuwata, Mikinori
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2018, 18 (22) : 16481 - 16498
  • [2] Light-Absorbing Brown Carbon Aerosol Constituents from Combustion of Indonesian Peat and Biomass
    Budisulistiorini, Sri Hapsari
    Riva, Matthieu
    Williams, Michael
    Chen, Jing
    Itoh, Masayuki
    Surratt, Jason D.
    Kuwata, Mikinori
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2017, 51 (08) : 4415 - 4423
  • [3] SoFi, an IGOR-based interface for the efficient use of the generalized multilinear engine (ME-2) for the source apportionment: ME-2 application to aerosol mass spectrometer data
    Canonaco, F.
    Crippa, M.
    Slowik, J. G.
    Baltensperger, U.
    Prevot, A. S. H.
    [J]. ATMOSPHERIC MEASUREMENT TECHNIQUES, 2013, 6 (12) : 3649 - 3661
  • [4] Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach
    Crippa, M.
    Canonaco, F.
    Lanz, V. A.
    Aijala, M.
    Allan, J. D.
    Carbone, S.
    Capes, G.
    Ceburnis, D.
    Dall'Osto, M.
    Day, D. A.
    DeCarlo, P. F.
    Ehn, M.
    Eriksson, A.
    Freney, E.
    Hildebrandt Ruiz, L.
    Hillamo, R.
    Jimenez, J. L.
    Junninen, H.
    Kiendler-Scharr, A.
    Kortelainen, A. -M.
    Kulmala, M.
    Laaksonen, A.
    Mensah, A.
    Mohr, C.
    Nemitz, E.
    O'Dowd, C.
    Ovadnevaite, J.
    Pandis, S. N.
    Petaja, T.
    Poulain, L.
    Saarikoski, S.
    Sellegri, K.
    Swietlicki, E.
    Tiitta, P.
    Worsnop, D. R.
    Baltensperger, U.
    Prevot, A. S. H.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2014, 14 (12) : 6159 - 6176
  • [5] Wintertime aerosol chemical composition and source apportionment of the organic fraction in the metropolitan area of Paris
    Crippa, M.
    DeCarlo, P. F.
    Slowik, J. G.
    Mohr, C.
    Heringa, M. F.
    Chirico, R.
    Poulain, L.
    Freutel, F.
    Sciare, J.
    Cozic, J.
    Di Marco, C. F.
    Elsasser, M.
    Nicolas, J. B.
    Marchand, N.
    Abidi, E.
    Wiedensohler, A.
    Drewnick, F.
    Schneider, J.
    Borrmann, S.
    Nemitz, E.
    Zimmermann, R.
    Jaffrezo, J-L
    Prevot, A. S. H.
    Baltensperger, U.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (02) : 961 - 981
  • [6] Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies
    Cubison, M. J.
    Ortega, A. M.
    Hayes, P. L.
    Farmer, D. K.
    Day, D.
    Lechner, M. J.
    Brune, W. H.
    Apel, E.
    Diskin, G. S.
    Fisher, J. A.
    Fuelberg, H. E.
    Hecobian, A.
    Knapp, D. J.
    Mikoviny, T.
    Riemer, D.
    Sachse, G. W.
    Sessions, W.
    Weber, R. J.
    Weinheimer, A. J.
    Wisthaler, A.
    Jimenez, J. L.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (23) : 12049 - 12064
  • [7] Measurements of delays of gas-phase compounds in a wide variety of tubing materials due to gas-wall interactions
    Deming, Benjamin L.
    Pagonis, Demetrios
    Liu, Xiaoxi
    Day, Douglas A.
    Talukdar, Ranajit
    Krechmer, Jordan E.
    de Gouw, Joost A.
    Jimenez, Jose L.
    Ziemann, Paul J.
    [J]. ATMOSPHERIC MEASUREMENT TECHNIQUES, 2019, 12 (06) : 3453 - 3461
  • [8] Atmospheric organic particulate matter: From smoke to secondary organic aerosol
    Donahue, Neil M.
    Robinson, Allen L.
    Pandis, Spyros N.
    [J]. ATMOSPHERIC ENVIRONMENT, 2009, 43 (01) : 94 - 106
  • [9] Evaluation of recently-proposed secondary organic aerosol models for a case study in Mexico City
    Dzepina, K.
    Volkamer, R. M.
    Madronich, S.
    Tulet, P.
    Ulbrich, I. M.
    Zhang, Q.
    Cappa, C. D.
    Ziemann, P. J.
    Jimenez, J. L.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (15) : 5681 - 5709
  • [10] Detection of high molecular weight organic tracers in vegetation smoke samples by high-temperature gas chromatography-mass spectrometry
    Elias, VO
    Simoneit, BRT
    Pereira, AS
    Cabral, JA
    Cardoso, JN
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1999, 33 (14) : 2369 - 2376