Automated Evaluation of Conventional Clock-Drawing Test Using Deep Neural Network: Potential as a Mass Screening Tool to Detect Individuals With Cognitive Decline

被引:16
作者
Sato, Kenichiro [1 ,2 ]
Niimi, Yoshiki [2 ]
Mano, Tatsuo [3 ]
Iwata, Atsushi [4 ]
Iwatsubo, Takeshi [1 ,2 ]
机构
[1] Univ Tokyo, Grad Sch Med, Dept Neuropathol, Bunkyo, Japan
[2] Univ Tokyo Hosp, Unit Early & Exploratory Clin Dev, Tokyo, Japan
[3] Univ Tokyo, Grad Sch Med, Dept Neurol, Bunkyo, Japan
[4] Tokyo Metropolitan Geriatr Ctr Hosp, Dept Neurol, Tokyo, Japan
关键词
deep learning; screening; cognitive decline; dementia; clock drawing test (CDT); ALZHEIMERS-DISEASE; ASSOCIATION;
D O I
10.3389/fneur.2022.896403
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
IntroductionThe Clock-Drawing Test (CDT) is a simple cognitive tool to examine multiple domains of cognition including executive function. We aimed to build a CDT-based deep neural network (DNN) model using data from a large cohort of older adults, to automatically detect cognitive decline, and explore its potential as a mass screening tool. MethodsOver 40,000 CDT images were obtained from the National Health and Aging Trends Study (NHATS) database, which collects the annual surveys of nationally representative community-dwelling older adults in the United States. A convolutional neural network was utilized in deep learning architecture to predict the cognitive status of participants based on drawn clock images. ResultsThe trained DNN model achieved balanced accuracy of 90.1 +/- 0.6% in identifying those with a decline in executive function compared to those without [positive likelihood ratio (PLH) = 16.3 +/- 6.8, negative likelihood ratio (NLH) = 0.14 +/- 0.03], and 77.2 +/- 2.7 % balanced accuracy for identifying those with probable dementia from those without (PLH = 5.1 +/- 0.5, NLH = 0.37 +/- 0.07). ConclusionsThis study demonstrated the feasibility of implementing conventional CDT to be automatically evaluated by DNN with a fair performance in a larger scale than ever, suggesting its potential as a mass screening test for ruling-in or ruling-out those with executive dysfunction or with probable dementia.
引用
收藏
页数:8
相关论文
共 20 条
[1]  
[Anonymous], 2020, DEMENTIA
[2]   Machine Learning Analysis of Digital Clock Drawing Test Performance for Differential Classification of Mild Cognitive Impairment Subtypes Versus Alzheimer's Disease [J].
Binaco, Russell ;
Calzaretto, Nicholas ;
Epifano, Jacob ;
McGuire, Sean ;
Umer, Muhammad ;
Emrani, Sheina ;
Wasserman, Victor ;
Libon, David J. ;
Polikar, Robi .
JOURNAL OF THE INTERNATIONAL NEUROPSYCHOLOGICAL SOCIETY, 2020, 26 (07) :690-700
[3]   Automatic dementia screening and scoring by applying deep learning on clock-drawing tests [J].
Chen, Shuqing ;
Stromer, Daniel ;
Alabdalrahim, Harb Alnasser ;
Schwab, Stefan ;
Weih, Markus ;
Maier, Andreas .
SCIENTIFIC REPORTS, 2020, 10 (01)
[4]   Improving 3D convolutional neural network comprehensibility via interactive visualization of relevance maps: evaluation in Alzheimer's disease [J].
Dyrba, Martin ;
Hanzig, Moritz ;
Altenstein, Slawek ;
Bader, Sebastian ;
Ballarini, Tommaso ;
Brosseron, Frederic ;
Buerger, Katharina ;
Cantre, Daniel ;
Dechent, Peter ;
Dobisch, Laura ;
Duezel, Emrah ;
Ewers, Michael ;
Fliessbach, Klaus ;
Glanz, Wenzel ;
Haynes, John-Dylan ;
Heneka, Michael T. ;
Janowitz, Daniel ;
Keles, Deniz B. ;
Kilimann, Ingo ;
Laske, Christoph ;
Maier, Franziska ;
Metzger, Coraline D. ;
Munk, Matthias H. ;
Perneczky, Robert ;
Peters, Oliver ;
Preis, Lukas ;
Priller, Josef ;
Rauchmann, Boris ;
Roy, Nina ;
Scheffler, Klaus ;
Schneider, Anja ;
Schott, Bjoern H. ;
Spottke, Annika ;
Spruth, Eike J. ;
Weber, Marc-Andre ;
Ertl-Wagner, Birgit ;
Wagner, Michael ;
Wiltfang, Jens ;
Jessen, Frank ;
Teipel, Stefan J. .
ALZHEIMERS RESEARCH & THERAPY, 2021, 13 (01)
[5]   Cohort Profile: The National Health and Aging Trends Study (NHATS) [J].
Freedman, Vicki A. ;
Kasper, Judith D. .
INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2019, 48 (04) :1044-+
[6]  
Kasper JD., 2013, CLASSIFICATION PERSO
[7]   Automatic, Qualitative Scoring of the Clock Drawing Test (CDT) Based on U-Net, CNN and Mobile Sensor Data [J].
Park, Ingyu ;
Lee, Unjoo .
SENSORS, 2021, 21 (15)
[8]   Literature Review of the Clock Drawing Test as a Tool for Cognitive Screening [J].
Pinto, Elisabete ;
Peters, Ruth .
DEMENTIA AND GERIATRIC COGNITIVE DISORDERS, 2009, 27 (03) :201-213
[9]   Association of Digital Clock Drawing With PET Amyloid and Tau Pathology in Normal Older Adults [J].
Rentz, Dorene M. ;
Papp, Kathryn V. ;
Mayblyum, Danielle V. ;
Sanchez, Justin S. ;
Klein, Hannah ;
Souillard-Mandar, William ;
Sperling, Reisa A. ;
Johnson, Keith A. .
NEUROLOGY, 2021, 96 (14) :E1844-E1854
[10]  
Samek W., 2017, ARXIV1708 08296, DOI [10.48550/arXiv.1708.08296, DOI 10.48550/ARXIV.1708.08296]