Curvature of quaternionic Kahler manifolds with S1-symmetry

被引:0
作者
Cortes, V. [1 ]
Saha, A. [1 ]
Thung, D. [1 ]
机构
[1] Univ Hamburg, Dept Math, Bundesstr 55, D-20146 Hamburg, Germany
关键词
D O I
10.1007/s00229-021-01294-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the behavior of connections and curvature under the HK/QK correspondence, proving simple formulae expressing the Levi-Civita connection and Riemann curvature tensor on the quaternionic Kahler side in terms of the initial hyper-Kahler data. Our curvature formula refines a well-known decomposition theorem due to Alekseevsky. As an application, we compute the norm of the curvature tensor for a series of complete quaternionic Kahler manifolds arising from flat hyper-Kahler manifolds. We use this to deduce that these manifolds are of cohomogeneity one.
引用
收藏
页码:35 / 64
页数:30
相关论文
共 15 条
[1]   Quaternionic Kahler metrics associated with special Kahler manifolds [J].
Alekseevsky, D. V. ;
Cortes, V. ;
Dyckmanns, M. ;
Mohaupt, T. .
JOURNAL OF GEOMETRY AND PHYSICS, 2015, 92 :271-287
[2]   Conification of Kahler and Hyper-Kahler Manifolds [J].
Alekseevsky, D. V. ;
Cortes, V. ;
Mohaupt, T. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 324 (02) :637-655
[3]  
Alekseevsky DV., 1968, FUNNKCIONAL ANAL PRI, V2, P1, DOI DOI 10.1007/BF01075356
[4]   Wall-crossing, Rogers dilogarithm, and the QK/HK correspondence [J].
Alexandrov, Sergei ;
Persson, Daniel ;
Pioline, Boris .
JOURNAL OF HIGH ENERGY PHYSICS, 2011, (12)
[5]  
Cortés V, 2017, SPRINGER INDAM SER, V23, P81, DOI 10.1007/978-3-319-67519-0_4
[6]   SYMMETRY STRUCTURE OF SPECIAL GEOMETRIES [J].
DEWIT, B ;
VANDERSEYPEN, F ;
VANPROEYEN, A .
NUCLEAR PHYSICS B, 1993, 400 (1-3) :463-521
[7]   QUATERNIONIC MANIFOLDS FOR TYPE-II SUPERSTRING VACUA OF CALABI-YAU SPACES [J].
FERRARA, S ;
SABHARWAL, S .
NUCLEAR PHYSICS B, 1990, 332 (02) :317-332
[8]   HyperKahler and quaternionic Kahler manifolds with S1-symmetries [J].
Haydys, Andriy .
JOURNAL OF GEOMETRY AND PHYSICS, 2008, 58 (03) :293-306
[9]   On the Hyperkahler/Quaternion Kahler Correspondence [J].
Hitchin, Nigel .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 324 (01) :77-106
[10]   Quaternionic Kahler Moduli Spaces [J].
Hitchin, Nigel .
RIEMANNIAN TOPOLOGY AND GEOMETRIC STRUCTURES ON MANIFOLDS, 2009, 271 :49-61