Robustness of nonautonomous attractors for a family of nonlocal reaction-diffusion equations without uniqueness

被引:24
作者
Caraballo, Tomas [1 ]
Herrera-Cobos, Marta [1 ]
Marin-Rubio, Pedro [1 ]
机构
[1] Univ Seville, Dept Ecuac Diferenciales & Anal Numer, Apdo Correos 1160, Seville 41080, Spain
关键词
Nonlocal diffusion; Reaction-diffusion equations without uniqueness; Pullback attractors; Upper semicontinuity of attractors; Multi-valued dynamical systems; PULLBACK ATTRACTORS; UPPER SEMICONTINUITY; 2D-NAVIER-STOKES EQUATIONS; ASYMPTOTIC-BEHAVIOR; UNBOUNDED-DOMAINS; FORCING TERM; EXISTENCE;
D O I
10.1007/s11071-015-2200-4
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, we consider a nonautonomous nonlocal reaction-diffusion equation with a small perturbation in the nonlocal diffusion term and the nonautonomous force. Under the assumptions imposed on the viscosity function, the uniqueness of weak solutions cannot be guaranteed. In this multi-valued framework, the existence of weak solutions and minimal pullback attractors in the -norm is analysed. In addition, some relationships between the attractors of the universe of fixed bounded sets and those associated to a universe given by a tempered condition are established. Finally, the upper semicontinuity property of pullback attractors w.r.t. the parameter is proved. Indeed, under suitable assumptions, we prove that the family of pullback attractors converges to the corresponding global compact attractor associated with the autonomous nonlocal limit problem when the parameter goes to zero.
引用
收藏
页码:35 / 50
页数:16
相关论文
共 54 条
  • [31] Dautray R., 1985, ANAL MATH CALCUL NUM
  • [32] Evans Lawrence C., 2010, Graduate Studies in Mathematics, V19, DOI [10.1090/gsm/019, DOI 10.1090/GSM/019]
  • [33] Pullback attractors in V for non-autonomous 2D-Navier-Stokes equations and their tempered behaviour
    Garcia-Luengo, Julia
    Marin-Rubio, Pedro
    Real, Jose
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (08) : 4333 - 4356
  • [34] On the Kneser property for the complex Ginzburg-Landau equation and the Lotka-Volterra system with diffusion
    Kapustyan, A. V.
    Valero, J.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 357 (01) : 254 - 272
  • [35] Attractors of multivalued dynamical processes generated by phase-field equations
    Kapustyan, AV
    Melnik, VS
    Valero, J
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (07): : 1969 - 1983
  • [36] On the interaction of a single-walled carbon nanotube with a moving nanoparticle using nonlocal Rayleigh, Timoshenko, and higher-order beam theories
    Kiani, Keivan
    Wang, Quan
    [J]. EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2012, 31 (01) : 179 - 202
  • [37] Kloeden P.E., 2003, STOCH DYNAM, V3, P101, DOI 10.1142/S0219493703000632
  • [38] Lange H., 1997, DIFFERENTIAL INTEGRA, V10, P1075
  • [39] Vibration of nonlocal Kelvin-Voigt viscoelastic damped Timoshenko beams
    Lei, Y.
    Adhikari, S.
    Friswell, M. I.
    [J]. INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2013, 66-67 : 1 - 13
  • [40] Lions J. L., 1969, Quelques Methodes De Resolution Des Problemes Aux Limites Nonlineaires